Module pyaurorax.data.ucalgary

Data downloading and reading routines for data provided by the University of Calgary.

Sub-modules

pyaurorax.data.ucalgary.read

Classes

class Calibration (filename: str,
detector_uid: str,
version: str,
generation_info: pyucalgarysrs.data.classes.CalibrationGenerationInfo,
rayleighs_perdn_persecond: float | None = None,
flat_field_multiplier: numpy.ndarray | None = None,
dataset: pyucalgarysrs.data.classes.Dataset | None = None)
Expand source code
@dataclass
class Calibration:
    """
    Representation for a calibration file.

    Attributes:
        filename (str): 
            Filename for the calibration file, as an absolute path of its location on the local machine.
        
        detector_uid (str): 
            Detector/imager/camera unique identifier
        
        version (str): 
            Version number of the calibration file
        
        generation_info (CalibrationGenerationInfo): 
            Metadata describing details about this calibration's generation process
        
        rayleighs_perdn_persecond (float): 
            Calibrated value for Rayleighs per data number per second (R/dn/s). This value will be None 
            if a flatfield calibration file was read instead of a rayleighs calibration file.
        
        flat_field_multiplier (ndarray): 
            Calibrated flat field array. This value will be None if a rayleighs calibration file was 
            read instead of a flatfield calibration file.
        
        dataset (Dataset): 
            The `Dataset` object for this data.
    """
    filename: str
    detector_uid: str
    version: str
    generation_info: CalibrationGenerationInfo
    rayleighs_perdn_persecond: Optional[float] = None
    flat_field_multiplier: Optional[ndarray] = None
    dataset: Optional[Dataset] = None

    def pretty_print(self):
        """
        A special print output for this class.
        """
        print("Calibration:")
        for var_name in dir(self):
            # exclude methods
            if (var_name.startswith("__") or var_name == "pretty_print"):
                continue

            # convert var to string format we want
            var_value = getattr(self, var_name)
            var_str = "None"
            if (var_name == "generation_info"):
                var_str = "CalibrationGenerationInfo(...)"
            elif (var_name == "dataset" and var_value is not None):
                var_str = "Dataset(...)"
            elif (var_value is not None):
                if (isinstance(var_value, ndarray)):
                    var_str = "array(dims=%s, dtype=%s)" % (var_value.shape, var_value.dtype)
                else:
                    var_str = str(var_value)

            # print string for this var
            print("  %-27s: %s" % (var_name, var_str))

Representation for a calibration file.

Attributes

filename : str
Filename for the calibration file, as an absolute path of its location on the local machine.
detector_uid : str
Detector/imager/camera unique identifier
version : str
Version number of the calibration file
generation_info : CalibrationGenerationInfo
Metadata describing details about this calibration's generation process
rayleighs_perdn_persecond : float
Calibrated value for Rayleighs per data number per second (R/dn/s). This value will be None if a flatfield calibration file was read instead of a rayleighs calibration file.
flat_field_multiplier : ndarray
Calibrated flat field array. This value will be None if a rayleighs calibration file was read instead of a flatfield calibration file.
dataset : Dataset
The Dataset object for this data.

Class variables

var dataset : pyucalgarysrs.data.classes.Dataset | None
var detector_uid : str
var filename : str
var flat_field_multiplier : numpy.ndarray | None
var generation_info : pyucalgarysrs.data.classes.CalibrationGenerationInfo
var rayleighs_perdn_persecond : float | None
var version : str

Methods

def pretty_print(self)
Expand source code
def pretty_print(self):
    """
    A special print output for this class.
    """
    print("Calibration:")
    for var_name in dir(self):
        # exclude methods
        if (var_name.startswith("__") or var_name == "pretty_print"):
            continue

        # convert var to string format we want
        var_value = getattr(self, var_name)
        var_str = "None"
        if (var_name == "generation_info"):
            var_str = "CalibrationGenerationInfo(...)"
        elif (var_name == "dataset" and var_value is not None):
            var_str = "Dataset(...)"
        elif (var_value is not None):
            if (isinstance(var_value, ndarray)):
                var_str = "array(dims=%s, dtype=%s)" % (var_value.shape, var_value.dtype)
            else:
                var_str = str(var_value)

        # print string for this var
        print("  %-27s: %s" % (var_name, var_str))

A special print output for this class.

class Data (data: Any,
timestamp: List[datetime.datetime],
metadata: List[Dict],
problematic_files: List[pyucalgarysrs.data.classes.ProblematicFile],
calibrated_data: Any,
dataset: pyucalgarysrs.data.classes.Dataset | None = None)
Expand source code
@dataclass
class Data:
    """
    Representation of the data read in from a `read` call.

    Attributes:
        data (Any): 
            The loaded data. This can be one of the following types: ndarray, List[Skymap], List[Calibration].
        
        timestamp (List[datetime.datetime]): 
            List of timestamps for the read in data.
        
        metadata (List[Dict]): 
            List of dictionaries containing metadata specific to each timestamp/image/record.
        
        problematic_files (List[ProblematicFiles]): 
            A list detailing any files that encountered issues during reading.
        
        calibrated_data (Any): 
            A calibrated version of the data. Populated and utilized by data analysis libraries. Has a `None` value
            until calibrated data is inserted manually.

        dataset (Dataset): 
            The `Dataset` object for this data.
    """
    data: Any
    timestamp: List[datetime.datetime]
    metadata: List[Dict]
    problematic_files: List[ProblematicFile]
    calibrated_data: Any
    dataset: Optional[Dataset] = None

    def __str__(self) -> str:
        return self.__repr__()

    def __repr__(self) -> str:
        # set data value
        if (isinstance(self.data, ndarray) is True):
            data_str = "array(dims=%s, dtype=%s)" % (self.data.shape, self.data.dtype)
        if (isinstance(self.data, GridData) is True):
            data_str = self.data.__repr__()
        elif (isinstance(self.data, list) is True):
            if (len(self.data) == 0):
                data_str = "[0 items]"
            elif (isinstance(self.data[0], Skymap) is True):
                if (len(self.data) == 1):
                    data_str = "[1 Skymap object]"
                else:
                    data_str = "[%d Skymap objects]" % (len(self.data))
            elif (isinstance(self.data[0], Calibration) is True):
                if (len(self.data) == 1):
                    data_str = "[1 Calibration object]"
                else:
                    data_str = "[%d Calibration objects]" % (len(self.data))
            elif (isinstance(self.data[0], RiometerData) is True):
                if (len(self.data) == 1):
                    data_str = "[1 RiometerData object]"
                else:
                    data_str = "[%d RiometerData objects]" % (len(self.data))
            elif (len(self.data) == 1):
                data_str = "[1 item]"
            else:
                data_str = "[%d items]" % (len(self.data))
        else:
            data_str = self.data.__repr__()

        # set timestamp string
        if (len(self.timestamp) == 0):
            timestamp_str = "[]"
        elif (len(self.timestamp) == 1):
            timestamp_str = "[1 datetime]"
        else:
            timestamp_str = "[%d datetimes]" % (len(self.timestamp))

        # set metadata string
        if (len(self.metadata) == 0):
            metadata_str = "[]"
        elif (len(self.metadata) == 1):
            metadata_str = "[1 dictionary]"
        else:
            metadata_str = "[%d dictionaries]" % (len(self.metadata))

        # set rest of values
        problematic_files_str = "[]" if len(self.problematic_files) == 0 else "[%d problematic files]" % (len(self.problematic_files))
        calibrated_data_str = "None" if self.calibrated_data is None else "array(dims=%s, dtype=%s)" % (self.calibrated_data.shape,
                                                                                                        self.calibrated_data.dtype)
        dataset_str = "None" if self.dataset is None else self.dataset.__repr__()[0:75] + "...)"

        # return
        return "Data(data=%s, timestamp=%s, metadata=%s, problematic_files=%s, calibrated_data=%s, dataset=%s)" % (
            data_str,
            timestamp_str,
            metadata_str,
            problematic_files_str,
            calibrated_data_str,
            dataset_str,
        )

    def pretty_print(self):
        """
        A special print output for this class.
        """
        # set data value
        if (isinstance(self.data, ndarray) is True):
            data_str = "array(dims=%s, dtype=%s)" % (self.data.shape, self.data.dtype)
        elif (isinstance(self.data, list) is True):
            if (len(self.data) == 0):
                data_str = "[0 items]"
            elif (isinstance(self.data[0], Skymap) is True):
                if (len(self.data) == 1):
                    data_str = "[1 Skymap object]"
                else:
                    data_str = "[%d Skymap objects]" % (len(self.data))
            elif (isinstance(self.data[0], Calibration) is True):
                if (len(self.data) == 1):
                    data_str = "[1 Calibration object]"
                else:
                    data_str = "[%d Calibration objects]" % (len(self.data))
            elif (isinstance(self.data[0], RiometerData) is True):
                if (len(self.data) == 1):
                    data_str = "[1 RiometerData object]"
                else:
                    data_str = "[%d HSRData objects]" % (len(self.data))
            elif (isinstance(self.data[0], HSRData) is True):
                if (len(self.data) == 1):
                    data_str = "[1 HSRData object]"
                else:
                    data_str = "[%d HSRData objects]" % (len(self.data))
            elif (len(self.data) == 1):
                data_str = "[1 item]"
            else:
                data_str = "[%d items]" % (len(self.data))
        else:
            data_str = self.data.__repr__()

        # set timestamp string
        if (len(self.timestamp) == 0):
            timestamp_str = "[]"
        elif (len(self.timestamp) == 1):
            timestamp_str = "[1 datetime]"
        else:
            timestamp_str = "[%d datetimes]" % (len(self.timestamp))

        # set metadata string
        if (len(self.metadata) == 0):
            metadata_str = "[]"
        elif (len(self.metadata) == 1):
            metadata_str = "[1 dictionary]"
        else:
            metadata_str = "[%d dictionaries]" % (len(self.metadata))

        # set rest of values
        problematic_files_str = "[]" if len(self.problematic_files) == 0 else "[%d problematic files]" % (len(self.problematic_files))
        calibrated_data_str = "None" if self.calibrated_data is None else "array(dims=%s, dtype=%s)" % (self.calibrated_data.shape,
                                                                                                        self.calibrated_data.dtype)
        dataset_str = "None" if self.dataset is None else self.dataset.__repr__()[0:75] + "...)"

        # print
        print("Data:")
        print("  %-19s: %s" % ("data", data_str))
        print("  %-19s: %s" % ("timestamp", timestamp_str))
        print("  %-19s: %s" % ("metadata", metadata_str))
        print("  %-19s: %s" % ("problematic_files", problematic_files_str))
        print("  %-19s: %s" % ("calibrated_data", calibrated_data_str))
        print("  %-19s: %s" % ("dataset", dataset_str))

Representation of the data read in from a pyaurorax.data.ucalgary.read call.

Attributes

data : Any
The loaded data. This can be one of the following types: ndarray, List[Skymap], List[Calibration].
timestamp : List[datetime.datetime]
List of timestamps for the read in data.
metadata : List[Dict]
List of dictionaries containing metadata specific to each timestamp/image/record.
problematic_files : List[ProblematicFiles]
A list detailing any files that encountered issues during reading.
calibrated_data : Any
A calibrated version of the data. Populated and utilized by data analysis libraries. Has a None value until calibrated data is inserted manually.
dataset : Dataset
The Dataset object for this data.

Class variables

var calibrated_data : Any
var data : Any
var dataset : pyucalgarysrs.data.classes.Dataset | None
var metadata : List[Dict]
var problematic_files : List[pyucalgarysrs.data.classes.ProblematicFile]
var timestamp : List[datetime.datetime]

Methods

def pretty_print(self)
Expand source code
def pretty_print(self):
    """
    A special print output for this class.
    """
    # set data value
    if (isinstance(self.data, ndarray) is True):
        data_str = "array(dims=%s, dtype=%s)" % (self.data.shape, self.data.dtype)
    elif (isinstance(self.data, list) is True):
        if (len(self.data) == 0):
            data_str = "[0 items]"
        elif (isinstance(self.data[0], Skymap) is True):
            if (len(self.data) == 1):
                data_str = "[1 Skymap object]"
            else:
                data_str = "[%d Skymap objects]" % (len(self.data))
        elif (isinstance(self.data[0], Calibration) is True):
            if (len(self.data) == 1):
                data_str = "[1 Calibration object]"
            else:
                data_str = "[%d Calibration objects]" % (len(self.data))
        elif (isinstance(self.data[0], RiometerData) is True):
            if (len(self.data) == 1):
                data_str = "[1 RiometerData object]"
            else:
                data_str = "[%d HSRData objects]" % (len(self.data))
        elif (isinstance(self.data[0], HSRData) is True):
            if (len(self.data) == 1):
                data_str = "[1 HSRData object]"
            else:
                data_str = "[%d HSRData objects]" % (len(self.data))
        elif (len(self.data) == 1):
            data_str = "[1 item]"
        else:
            data_str = "[%d items]" % (len(self.data))
    else:
        data_str = self.data.__repr__()

    # set timestamp string
    if (len(self.timestamp) == 0):
        timestamp_str = "[]"
    elif (len(self.timestamp) == 1):
        timestamp_str = "[1 datetime]"
    else:
        timestamp_str = "[%d datetimes]" % (len(self.timestamp))

    # set metadata string
    if (len(self.metadata) == 0):
        metadata_str = "[]"
    elif (len(self.metadata) == 1):
        metadata_str = "[1 dictionary]"
    else:
        metadata_str = "[%d dictionaries]" % (len(self.metadata))

    # set rest of values
    problematic_files_str = "[]" if len(self.problematic_files) == 0 else "[%d problematic files]" % (len(self.problematic_files))
    calibrated_data_str = "None" if self.calibrated_data is None else "array(dims=%s, dtype=%s)" % (self.calibrated_data.shape,
                                                                                                    self.calibrated_data.dtype)
    dataset_str = "None" if self.dataset is None else self.dataset.__repr__()[0:75] + "...)"

    # print
    print("Data:")
    print("  %-19s: %s" % ("data", data_str))
    print("  %-19s: %s" % ("timestamp", timestamp_str))
    print("  %-19s: %s" % ("metadata", metadata_str))
    print("  %-19s: %s" % ("problematic_files", problematic_files_str))
    print("  %-19s: %s" % ("calibrated_data", calibrated_data_str))
    print("  %-19s: %s" % ("dataset", dataset_str))

A special print output for this class.

class Dataset (name: str,
short_description: str,
long_description: str,
data_tree_url: str,
file_listing_supported: bool,
file_reading_supported: bool,
level: str,
supported_libraries: List[str],
file_time_resolution: str,
doi: str | None = None,
doi_details: str | None = None,
citation: str | None = None)
Expand source code
class Dataset:
    """
    A dataset available from the UCalgary Space Remote Sensing API, with possibly
    support for downloading and/or reading.

    Attributes:
        name (str): 
            Dataset name
        
        short_description (str): 
            A short description about the dataset
        
        long_description (str): 
            A longer description about the dataset
        
        data_tree_url (str): 
            The data tree URL prefix. Used for saving data locally with a similar data tree 
            structure compared to the UCalgary Open Data archive.
        
        file_listing_supported (bool): 
            Flag indicating if file listing (downloading) is supported for this dataset.
        
        file_reading_supported (bool): 
            Flag indicating if file reading is supported for this dataset.

        file_time_resolution (str): 
            Time resolution of the files for this dataset, represented as a string. Possible values
            are: 1min, 1hr, 1day, not_applicable.

        level (str): 
            Dataset level as per L0/L1/L2/etc standards.
        
        doi (str): 
            Dataset DOI unique identifier.
        
        doi_details (str): 
            Further details about the DOI.
        
        citation (str): 
            String to use when citing usage of the dataset.
        
        provider (str): 
            Data provider.

        supported_libraries (List[str]): 
            Libraries that support usage of this dataset.
    """

    def __init__(self,
                 name: str,
                 short_description: str,
                 long_description: str,
                 data_tree_url: str,
                 file_listing_supported: bool,
                 file_reading_supported: bool,
                 level: str,
                 supported_libraries: List[str],
                 file_time_resolution: str,
                 doi: Optional[str] = None,
                 doi_details: Optional[str] = None,
                 citation: Optional[str] = None):
        self.name = name
        self.short_description = short_description
        self.long_description = long_description
        self.data_tree_url = data_tree_url
        self.file_listing_supported = file_listing_supported
        self.file_reading_supported = file_reading_supported
        self.level = level
        self.doi = doi
        self.doi_details = doi_details
        self.citation = citation
        self.provider = "UCalgary"
        self.supported_libraries = supported_libraries
        self.file_time_resolution = file_time_resolution

    def __str__(self) -> str:
        return self.__repr__()

    def __repr__(self) -> str:
        return "Dataset(name=%s, short_description='%s', provider='%s', level='%s', doi_details='%s', ...)" % (
            self.name,
            self.short_description,
            self.provider,
            self.level,
            self.doi_details,
        )

    def pretty_print(self):
        """
        A special print output for this class.
        """
        print("Dataset:")
        for var_name in dir(self):
            # exclude methods
            if (var_name.startswith("__") or var_name == "pretty_print"):
                continue

            # convert var to string format we want
            var_value = getattr(self, var_name)
            print("  %-24s: %s" % (var_name, None if var_value is None else var_value))

A dataset available from the UCalgary Space Remote Sensing API, with possibly support for downloading and/or reading.

Attributes

name : str
Dataset name
short_description : str
A short description about the dataset
long_description : str
A longer description about the dataset
data_tree_url : str
The data tree URL prefix. Used for saving data locally with a similar data tree structure compared to the UCalgary Open Data archive.
file_listing_supported : bool
Flag indicating if file listing (downloading) is supported for this dataset.
file_reading_supported : bool
Flag indicating if file reading is supported for this dataset.
file_time_resolution : str
Time resolution of the files for this dataset, represented as a string. Possible values are: 1min, 1hr, 1day, not_applicable.
level : str
Dataset level as per L0/L1/L2/etc standards.
doi : str
Dataset DOI unique identifier.
doi_details : str
Further details about the DOI.
citation : str
String to use when citing usage of the dataset.
provider : str
Data provider.
supported_libraries : List[str]
Libraries that support usage of this dataset.

Methods

def pretty_print(self)
Expand source code
def pretty_print(self):
    """
    A special print output for this class.
    """
    print("Dataset:")
    for var_name in dir(self):
        # exclude methods
        if (var_name.startswith("__") or var_name == "pretty_print"):
            continue

        # convert var to string format we want
        var_value = getattr(self, var_name)
        print("  %-24s: %s" % (var_name, None if var_value is None else var_value))

A special print output for this class.

class FileDownloadResult (filenames: List[str],
count: int,
total_bytes: int,
output_root_path: str,
dataset: pyucalgarysrs.data.classes.Dataset)
Expand source code
@dataclass
class FileDownloadResult:
    """
    Representation of the results from a data download call.

    Attributes:
        filenames (List[str]): 
            List of downloaded files, as absolute paths of their location on the local machine.
        
        count (int): 
            Number of files downloaded
        
        total_bytes (int): 
            Cumulative amount of bytes saved on the local machine.
        
        output_root_path (str): 
            The root path of where the data was saved to on the local machine.
        
        dataset (Dataset): 
            The `Dataset` object for this data.
    """
    filenames: List[str]
    count: int
    total_bytes: int
    output_root_path: str
    dataset: Dataset

    def pretty_print(self):
        """
        A special print output for this class.
        """
        print("FileListingResponse:")
        for var_name in dir(self):
            # exclude methods
            if (var_name.startswith("__") or var_name == "pretty_print"):
                continue

            # convert var to string format we want
            var_value = getattr(self, var_name)
            if (var_name == "filenames"):
                print("  %-18s: [%d filenames]" % (var_name, len(var_value)))
            else:
                print("  %-18s: %s" % (var_name, None if var_value is None else var_value))

Representation of the results from a data download call.

Attributes

filenames : List[str]
List of downloaded files, as absolute paths of their location on the local machine.
count : int
Number of files downloaded
total_bytes : int
Cumulative amount of bytes saved on the local machine.
output_root_path : str
The root path of where the data was saved to on the local machine.
dataset : Dataset
The Dataset object for this data.

Class variables

var count : int
var dataset : pyucalgarysrs.data.classes.Dataset
var filenames : List[str]
var output_root_path : str
var total_bytes : int

Methods

def pretty_print(self)
Expand source code
def pretty_print(self):
    """
    A special print output for this class.
    """
    print("FileListingResponse:")
    for var_name in dir(self):
        # exclude methods
        if (var_name.startswith("__") or var_name == "pretty_print"):
            continue

        # convert var to string format we want
        var_value = getattr(self, var_name)
        if (var_name == "filenames"):
            print("  %-18s: [%d filenames]" % (var_name, len(var_value)))
        else:
            print("  %-18s: %s" % (var_name, None if var_value is None else var_value))

A special print output for this class.

class FileListingResponse (urls: List[str],
path_prefix: str,
count: int,
dataset: pyucalgarysrs.data.classes.Dataset,
total_bytes: int | None = None)
Expand source code
@dataclass
class FileListingResponse:
    """
    Representation of the file listing response from the UCalgary Space Remote Sensing API.

    Attributes:
        urls (List[str]): 
            A list of URLs for available data files.
        
        path_prefix (str): 
            The URL prefix, which is sed for saving data locally with a similar data tree 
            structure compared to the UCalgary Open Data archive.
        
        count (int): 
            The number of URLs available.
        
        dataset (Dataset): 
            The `Dataset` object for this data.
        
        total_bytes (int): 
            The cumulative amount of bytes for the available URLs.
    """
    urls: List[str]
    path_prefix: str
    count: int
    dataset: Dataset
    total_bytes: Optional[int] = None

    def pretty_print(self):
        """
        A special print output for this class.
        """
        print("FileListingResponse:")
        for var_name in dir(self):
            # exclude methods
            if (var_name.startswith("__") or var_name == "pretty_print"):
                continue

            # convert var to string format we want
            var_value = getattr(self, var_name)
            if (var_name == "urls"):
                print("  %-13s: [%d URLs]" % (var_name, len(var_value)))
            else:
                print("  %-13s: %s" % (var_name, None if var_value is None else var_value))

Representation of the file listing response from the UCalgary Space Remote Sensing API.

Attributes

urls : List[str]
A list of URLs for available data files.
path_prefix : str
The URL prefix, which is sed for saving data locally with a similar data tree structure compared to the UCalgary Open Data archive.
count : int
The number of URLs available.
dataset : Dataset
The Dataset object for this data.
total_bytes : int
The cumulative amount of bytes for the available URLs.

Class variables

var count : int
var dataset : pyucalgarysrs.data.classes.Dataset
var path_prefix : str
var total_bytes : int | None
var urls : List[str]

Methods

def pretty_print(self)
Expand source code
def pretty_print(self):
    """
    A special print output for this class.
    """
    print("FileListingResponse:")
    for var_name in dir(self):
        # exclude methods
        if (var_name.startswith("__") or var_name == "pretty_print"):
            continue

        # convert var to string format we want
        var_value = getattr(self, var_name)
        if (var_name == "urls"):
            print("  %-13s: [%d URLs]" % (var_name, len(var_value)))
        else:
            print("  %-13s: %s" % (var_name, None if var_value is None else var_value))

A special print output for this class.

class Observatory (uid: str, full_name: str, geodetic_latitude: float, geodetic_longitude: float)
Expand source code
class Observatory:
    """
    Representation for an observatory.

    Attributes:
        uid (str): 
            4-letter unique identifier (traditionally referred to as the site UID)

        full_name (str): 
            full location string for the observatory
        
        geodetic_latitude (float): 
            geodetic latitude for the observatory, in decimal format (-90 to 90)
        
        geodetic_longitude (float): 
            geodetic longitude for the observatory, in decimal format (-180 to 180)

        provider (str): 
            Data provider.
    """

    def __init__(self, uid: str, full_name: str, geodetic_latitude: float, geodetic_longitude: float):
        self.uid = uid
        self.full_name = full_name
        self.geodetic_latitude = geodetic_latitude
        self.geodetic_longitude = geodetic_longitude
        self.provider = "UCalgary"

    def __str__(self) -> str:
        return self.__repr__()

    def __repr__(self) -> str:
        return "Observatory(uid=%s, full_name='%s', geodetic_latitude=%s, geodetic_longitude=%s, provider='%s')" % (
            self.uid,
            self.full_name,
            self.geodetic_latitude,
            self.geodetic_longitude,
            self.provider,
        )

    def pretty_print(self):
        """
        A special print output for this class.
        """
        print("Observatory:")
        for var_name in dir(self):
            # exclude methods
            if (var_name.startswith("__") or var_name == "pretty_print"):
                continue

            # convert var to string format we want
            var_value = getattr(self, var_name)
            print("  %-19s: %s" % (var_name, None if var_value is None else var_value))

Representation for an observatory.

Attributes

uid : str
4-letter unique identifier (traditionally referred to as the site UID)
full_name : str
full location string for the observatory
geodetic_latitude : float
geodetic latitude for the observatory, in decimal format (-90 to 90)
geodetic_longitude : float
geodetic longitude for the observatory, in decimal format (-180 to 180)
provider : str
Data provider.

Methods

def pretty_print(self)
Expand source code
def pretty_print(self):
    """
    A special print output for this class.
    """
    print("Observatory:")
    for var_name in dir(self):
        # exclude methods
        if (var_name.startswith("__") or var_name == "pretty_print"):
            continue

        # convert var to string format we want
        var_value = getattr(self, var_name)
        print("  %-19s: %s" % (var_name, None if var_value is None else var_value))

A special print output for this class.

class Skymap (filename: str,
project_uid: str,
site_uid: str,
imager_uid: str,
site_map_latitude: float,
site_map_longitude: float,
site_map_altitude: float,
full_elevation: numpy.ndarray,
full_azimuth: numpy.ndarray | None,
full_map_altitude: numpy.ndarray,
full_map_latitude: numpy.ndarray,
full_map_longitude: numpy.ndarray,
generation_info: pyucalgarysrs.data.classes.SkymapGenerationInfo,
version: str)
Expand source code
@dataclass
class Skymap:
    """
    Representation for a skymap file.

    Attributes:
        filename (str): 
            Filename for the skymap file, as an absolute path of its location on the local machine.
        
        project_uid (str): 
            Project unique identifier
        
        site_uid (str): 
            Site unique identifier
        
        imager_uid (str): 
            Imager/device unique identifier
        
        site_map_latitude (float): 
            Geodetic latitude of instrument
        
        site_map_longitude (float): 
            Geodetic longitude of instrument
        
        site_map_altitude (float): 
            Altitude of the instrument (in meters)
        
        full_elevation (ndarray): 
            Elevation angle from horizon, for each image pixel (in degrees)
        
        full_azimuth (ndarray | None): 
            Local azimuth angle from 0 degrees north, positive moving east (in degrees). None for TREx Spectrograph.
        
        full_map_altitude (ndarray): 
            Altitudes that image coordinates are mapped to (in kilometers)
        
        full_map_latitude (ndarray): 
            Geodetic latitudes of pixel corners, mapped to various altitudes (specified by `full_map_altitude`)
        
        full_map_longitude (ndarray): 
            Geodetic longitudes of pixel corners, mapped to various altitudes (specified by `full_map_altitude`)
        
        generation_info (SkymapGenerationInfo): 
            Metadata describing details about this skymap's generation process
        
        version (str): 
            Version of the skymap
        
        dataset (Dataset): 
            The `Dataset` object for this data.
    """
    filename: str
    project_uid: str
    site_uid: str
    imager_uid: str
    site_map_latitude: float
    site_map_longitude: float
    site_map_altitude: float
    full_elevation: ndarray
    full_azimuth: Union[ndarray, None]
    full_map_altitude: ndarray
    full_map_latitude: ndarray
    full_map_longitude: ndarray
    generation_info: SkymapGenerationInfo
    version: str

    def __str__(self) -> str:
        return self.__repr__()

    def __repr__(self) -> str:
        return "Skymap(project_uid=%s, site_uid=%s, imager_uid=%s, site_map_latitude=%f, site_map_longitude=%f, ...)" % (
            self.project_uid,
            self.site_uid,
            self.imager_uid,
            self.site_map_latitude,
            self.site_map_longitude,
        )

    def pretty_print(self):
        """
        A special print output for this class.
        """
        print("Skymap:")
        for var_name in dir(self):
            # exclude methods
            if (var_name.startswith("__") or var_name == "pretty_print" or var_name == "get_precalculated_altitudes"):
                continue

            # convert var to string format we want
            var_value = getattr(self, var_name)
            var_str = "None"
            if (var_name == "generation_info"):
                var_str = "SkymapGenerationInfo(...)"
            elif (var_value is not None):
                if (isinstance(var_value, ndarray)):
                    var_str = "array(dims=%s, dtype=%s)" % (var_value.shape, var_value.dtype)
                else:
                    var_str = str(var_value)

            # print string for this var
            print("  %-20s: %s" % (var_name, var_str))

    def get_precalculated_altitudes(self):
        """
        Get the altitudes that have been precalculated in this skymap. Units are kilometers.
        """
        alts_km = [float(x / 1000.) for x in self.full_map_altitude]
        return alts_km

Representation for a skymap file.

Attributes

filename : str
Filename for the skymap file, as an absolute path of its location on the local machine.
project_uid : str
Project unique identifier
site_uid : str
Site unique identifier
imager_uid : str
Imager/device unique identifier
site_map_latitude : float
Geodetic latitude of instrument
site_map_longitude : float
Geodetic longitude of instrument
site_map_altitude : float
Altitude of the instrument (in meters)
full_elevation : ndarray
Elevation angle from horizon, for each image pixel (in degrees)
full_azimuth : ndarray | None
Local azimuth angle from 0 degrees north, positive moving east (in degrees). None for TREx Spectrograph.
full_map_altitude : ndarray
Altitudes that image coordinates are mapped to (in kilometers)
full_map_latitude : ndarray
Geodetic latitudes of pixel corners, mapped to various altitudes (specified by full_map_altitude)
full_map_longitude : ndarray
Geodetic longitudes of pixel corners, mapped to various altitudes (specified by full_map_altitude)
generation_info : SkymapGenerationInfo
Metadata describing details about this skymap's generation process
version : str
Version of the skymap
dataset : Dataset
The Dataset object for this data.

Class variables

var filename : str
var full_azimuth : numpy.ndarray | None
var full_elevation : numpy.ndarray
var full_map_altitude : numpy.ndarray
var full_map_latitude : numpy.ndarray
var full_map_longitude : numpy.ndarray
var generation_info : pyucalgarysrs.data.classes.SkymapGenerationInfo
var imager_uid : str
var project_uid : str
var site_map_altitude : float
var site_map_latitude : float
var site_map_longitude : float
var site_uid : str
var version : str

Methods

def get_precalculated_altitudes(self)
Expand source code
def get_precalculated_altitudes(self):
    """
    Get the altitudes that have been precalculated in this skymap. Units are kilometers.
    """
    alts_km = [float(x / 1000.) for x in self.full_map_altitude]
    return alts_km

Get the altitudes that have been precalculated in this skymap. Units are kilometers.

def pretty_print(self)
Expand source code
def pretty_print(self):
    """
    A special print output for this class.
    """
    print("Skymap:")
    for var_name in dir(self):
        # exclude methods
        if (var_name.startswith("__") or var_name == "pretty_print" or var_name == "get_precalculated_altitudes"):
            continue

        # convert var to string format we want
        var_value = getattr(self, var_name)
        var_str = "None"
        if (var_name == "generation_info"):
            var_str = "SkymapGenerationInfo(...)"
        elif (var_value is not None):
            if (isinstance(var_value, ndarray)):
                var_str = "array(dims=%s, dtype=%s)" % (var_value.shape, var_value.dtype)
            else:
                var_str = str(var_value)

        # print string for this var
        print("  %-20s: %s" % (var_name, var_str))

A special print output for this class.

class UCalgaryManager (aurorax_obj)
Expand source code
class UCalgaryManager:
    """
    The UCalgaryManager object is initialized within every PyAuroraX object. It acts as a way to access 
    the submodules and carry over configuration information in the super class.
    """

    __DEFAULT_DOWNLOAD_N_PARALLEL = 5

    def __init__(self, aurorax_obj):
        self.__aurorax_obj: PyAuroraX = aurorax_obj

        # initialize sub-modules
        self.__readers = ReadManager(self.__aurorax_obj)

    @property
    def readers(self):
        """
        Access to the `read` submodule from within a PyAuroraX object.
        """
        return self.__readers

    def list_datasets(self, name: Optional[str] = None, timeout: Optional[int] = None) -> List[Dataset]:
        """
        List available datasets

        Args:
            name (str): 
                Supply a name used for filtering. If that name is found in the available dataset 
                names received from the API, it will be included in the results. This parameter is
                optional.
            
            timeout (int): 
                Represents how many seconds to wait for the API to send data before giving up. The 
                default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
                object. This parameter is optional.
            
        Returns:
            A list of [`Dataset`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.Dataset)
            objects.
        
        Raises:
            pyaurorax.exceptions.AuroraXAPIError: An API error was encountered.
        """
        try:
            return self.__aurorax_obj.srs_obj.data.list_datasets(
                name=name,
                timeout=timeout,
                supported_library="pyaurorax",
            )
        except SRSAPIError as e:
            raise AuroraXAPIError(e) from e

    def get_dataset(self, name: str, timeout: Optional[int] = None) -> Dataset:
        """
        Get a specific dataset

        Args:
            name (str): 
                The dataset name to get. Case is insensitive.
            
            timeout (int): 
                Represents how many seconds to wait for the API to send data before giving up. The 
                default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
                object. This parameter is optional.
            
        Returns:
            The found [`Dataset`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.Dataset)
            object. Raises an exception if not found.
        
        Raises:
            pyaurorax.exceptions.AuroraXAPIError: An API error was encountered.
        """
        try:
            return self.__aurorax_obj.srs_obj.data.get_dataset(name, timeout=timeout)
        except Exception as e:
            raise AuroraXAPIError(e) from e

    def list_observatories(self,
                           instrument_array: Literal["themis_asi", "rego", "trex_rgb", "trex_nir", "trex_blue", "trex_spectrograph"],
                           uid: Optional[str] = None,
                           timeout: Optional[int] = None) -> List[Observatory]:
        """
        List information about observatories

        Args:
            instrument_array (str): 
                The instrument array to list observatories for. Valid values are: themis_asi, rego, 
                trex_rgb, trex_nir, trex_blue, and trex_spectrograph.

            uid (str): 
                Supply a observatory unique identifier used for filtering (usually 4-letter site code). If that UID 
                is found in the available observatories received from the API, it will be included in the results. This 
                parameter is optional.
            
            timeout (int): 
                Represents how many seconds to wait for the API to send data before giving up. The 
                default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
                object. This parameter is optional.
            
        Returns:
            A list of [`Observatory`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.Observatory)
            objects.
        
        Raises:
            pyaurorax.exceptions.AuroraXAPIError: An API error was encountered.
        """
        try:
            return self.__aurorax_obj.srs_obj.data.list_observatories(instrument_array, uid=uid, timeout=timeout)
        except SRSAPIError as e:
            raise AuroraXAPIError(e) from e

    def list_supported_read_datasets(self) -> List[str]:
        """
        List the datasets which have file reading capabilities supported.

        Returns:
            A list of the dataset names with file reading support.
        """
        return self.__aurorax_obj.srs_obj.data.list_supported_read_datasets()

    def is_read_supported(self, dataset_name: str) -> bool:
        """
        Check if a given dataset has file reading support. 
        
        Not all datasets available in the UCalgary Space Remote Sensing Open Data Platform 
        have special readfile routines in this library. This is because some datasets are 
        in basic formats such as JPG or PNG, so unique functions aren't necessary. We leave 
        it up to the user to open these basic files in whichever way they prefer. Use the 
        `list_supported_read_datasets()` function to see all datasets that have special
        file reading functionality in this library.

        Args:
            dataset_name (str): 
                The dataset name to check if file reading is supported. This parameter 
                is required.
        
        Returns:
            Boolean indicating if file reading is supported.
        """
        return self.__aurorax_obj.srs_obj.data.is_read_supported(dataset_name)

    def download(self,
                 dataset_name: str,
                 start: datetime.datetime,
                 end: datetime.datetime,
                 site_uid: Optional[str] = None,
                 device_uid: Optional[str] = None,
                 n_parallel: int = __DEFAULT_DOWNLOAD_N_PARALLEL,
                 overwrite: bool = False,
                 progress_bar_disable: bool = False,
                 progress_bar_ncols: Optional[int] = None,
                 progress_bar_ascii: Optional[str] = None,
                 progress_bar_desc: Optional[str] = None,
                 timeout: Optional[int] = None) -> FileDownloadResult:
        """
        Download data from the UCalgary Space Remote Sensing Open Data Platform.

        The parameters `dataset_name`, `start`, and `end` are required. All other parameters
        are optional.

        Note that usage of the site and device UID filters applies differently to some datasets.
        For example, both fields can be used for most raw and keogram data, but only site UID can
        be used for skymap datasets, and only device UID can be used for calibration datasets. If 
        fields are specified during a call in which site or device UID is not used, a UserWarning
        is display to provide the user with feedback about this detail.

        Args:
            dataset_name (str): 
                Name of the dataset to download data for. Use the `list_datasets()` function
                to get the possible values for this parameter. One example is "THEMIS_ASI_RAW". 
                Note that dataset names are case sensitive. This parameter is required.

            start (datetime.datetime): 
                Start timestamp to use (inclusive), expected to be in UTC. Any timezone data 
                will be ignored. This parameter is required.

            end (datetime.datetime): 
                End timestamp to use (inclusive), expected to be in UTC. Any timezone data 
                will be ignored. This parameter is required.

            site_uid (str): 
                The site UID to filter for. If specified, data will be downloaded for only the 
                site matching the given value. If excluded, data for all available sites will 
                be downloaded. An example value could be 'atha', meaning all data from the 
                Athabasca observatory will be downloaded for the given dataset name, start, and 
                end times. This parameter is optional.

            device_uid (str): 
                The device UID to filter for. If specified, data will be downloaded for only the
                device matching the given value. If excluded, data for all available devices will
                be downloaded. An example value could be 'themis02', meaning all data matching that
                device will be downloaded for the given dataset name, start, and end times. This
                parameter is optional.

            n_parallel (int): 
                Number of data files to download in parallel. Default value is 5. Adjust as needed 
                for your internet connection. This parameter is optional.

            overwrite (bool): 
                By default, data will not be re-downloaded if it already exists locally. Use 
                the `overwrite` parameter to force re-downloading. Default is `False`. This 
                parameter is optional.

            progress_bar_disable (bool): 
                Disable the progress bar. Default is `False`. This parameter is optional.

            progress_bar_ncols (int): 
                Number of columns for the progress bar (straight passthrough of the `ncols` 
                parameter in a tqdm progress bar). This parameter is optional. See Notes section
                below for further information.
            
            progress_bar_ascii (str): 
                ASCII value to use when constructing the visual aspect of the progress bar (straight 
                passthrough of the `ascii` parameter in a tqdm progress bar). This parameter is 
                optional. See Notes section below for further details.

            timeout (int): 
                Represents how many seconds to wait for the API to send data before giving up. The 
                default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
                object. This parameter is optional.

        Returns:
            A [`FileDownloadResult`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileDownloadResult) 
            object containing details about what data files were downloaded.

        Raises:
            pyaurorax.exceptions.AuroraXDownloadError: an error was encountered while downloading a 
                specific file
            pyaurorax.exceptions.AuroraXAPIError: an API error was encountered

        Notes:
        --------
        The `progress_bar_*` parameters can be used to enable/disable/adjust the progress bar. 
        Excluding the `progress_bar_disable` parameter, all others are straight pass-throughs 
        to the tqdm progress bar function. The `progress_bar_ncols` parameter allows for 
        adjusting the width. The `progress_bar_ascii` parameter allows for adjusting the appearance 
        of the progress bar. And the `progress_bar_desc` parameter allows for adjusting the 
        description at the beginning of the progress bar. Further details can be found on the
        [tqdm documentation](https://tqdm.github.io/docs/tqdm/#tqdm-objects).

        Data downloading will use the `download_data_root_path` variable within the super class'
        object ([`PyAuroraX`](../../index.html#pyaurorax.PyAuroraX)) to determine where to save data to. If 
        you'd like to change this path to somewhere else you can change that variable before your
        download() call, like so:

        ```python
        import pyaurorax
        aurorax = pyaurorax.PyAuroraX()
        aurorax.data_download_root_path = "some_new_path"
        aurorax.data.download(dataset_name, start, end)
        ```
        """
        try:
            return self.__aurorax_obj.srs_obj.data.download(
                dataset_name,
                start,
                end,
                site_uid=site_uid,
                device_uid=device_uid,
                n_parallel=n_parallel,
                overwrite=overwrite,
                progress_bar_disable=progress_bar_disable,
                progress_bar_ncols=progress_bar_ncols,
                progress_bar_ascii=progress_bar_ascii,
                progress_bar_desc=progress_bar_desc,
                timeout=timeout,
            )
        except SRSDownloadError as e:
            raise AuroraXDownloadError(e) from e
        except SRSAPIError as e:
            raise AuroraXAPIError(e) from e

    def download_using_urls(self,
                            file_listing_response: FileListingResponse,
                            n_parallel: int = __DEFAULT_DOWNLOAD_N_PARALLEL,
                            overwrite: bool = False,
                            progress_bar_disable: bool = False,
                            progress_bar_ncols: Optional[int] = None,
                            progress_bar_ascii: Optional[str] = None,
                            progress_bar_desc: Optional[str] = None,
                            timeout: Optional[int] = None) -> FileDownloadResult:
        """
        Download data from the UCalgary Space Remote Sensing Open Data Platform using 
        a FileListingResponse object. This would be used in cases where more customization 
        is needed than the generic `download()` function. 
        
        One example of using this function would start by using `get_urls()` to retrieve the
        list of URLs available for download, then further process this list to fewer files
        based on some other requirement (ie. time down-sampling such as one file per hour). 
        Lastly using this function to download the new custom set URLs.

        Args:
            file_listing_response (FileListingResponse): 
                A [`FileListingResponse`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileListingResponse) 
                object returned from a `get_urls()` call, which contains a list of URLs to download 
                for a specific dataset. This parameter is required.

            n_parallel (int): 
                Number of data files to download in parallel. Default value is 5. Adjust as needed 
                for your internet connection. This parameter is optional.

            overwrite (bool): 
                By default, data will not be re-downloaded if it already exists locally. Use 
                the `overwrite` parameter to force re-downloading. Default is `False`. This 
                parameter is optional.

            progress_bar_disable (bool): 
                Disable the progress bar. Default is `False`. This parameter is optional.

            progress_bar_ncols (int): 
                Number of columns for the progress bar (straight passthrough of the `ncols` 
                parameter in a tqdm progress bar). This parameter is optional. See Notes section
                below for further information.
            
            progress_bar_ascii (str): 
                ASCII value to use when constructing the visual aspect of the progress bar (straight 
                passthrough of the `ascii` parameter in a tqdm progress bar). This parameter is 
                optional. See Notes section below for further details.

            timeout (int): 
                Represents how many seconds to wait for the API to send data before giving up. The 
                default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
                object. This parameter is optional.

        Returns:
            A [`FileDownloadResult`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileDownloadResult) 
            object containing details about what data files were downloaded.

        Raises:
            pyaurorax.exceptions.AuroraXDownloadError: an error was encountered while downloading a 
                specific file
            pyaurorax.exceptions.AuroraXAPIError: an API error was encountered

        Notes:
        --------
        The `progress_bar_*` parameters can be used to enable/disable/adjust the progress bar. 
        Excluding the `progress_bar_disable` parameter, all others are straight pass-throughs 
        to the tqdm progress bar function. The `progress_bar_ncols` parameter allows for 
        adjusting the width. The `progress_bar_ascii` parameter allows for adjusting the appearance 
        of the progress bar. And the `progress_bar_desc` parameter allows for adjusting the 
        description at the beginning of the progress bar. Further details can be found on the
        [tqdm documentation](https://tqdm.github.io/docs/tqdm/#tqdm-objects).

        Data downloading will use the `download_data_root_path` variable within the super class'
        object ([`PyAuroraX`](../../index.html#pyaurorax.PyAuroraX)) to determine where to save data to. If 
        you'd like to change this path to somewhere else you can change that variable before your
        download() call, like so:

        ```python
        import pyaurorax
        aurorax = pyaurorax.PyAuroraX()
        aurorax.data_download_root_path = "some_new_path"
        aurorax.data.download(dataset_name, start, end)
        ```
        """
        try:
            return self.__aurorax_obj.srs_obj.data.download_using_urls(
                file_listing_response,
                n_parallel=n_parallel,
                overwrite=overwrite,
                progress_bar_disable=progress_bar_disable,
                progress_bar_ncols=progress_bar_ncols,
                progress_bar_ascii=progress_bar_ascii,
                progress_bar_desc=progress_bar_desc,
                timeout=timeout,
            )
        except SRSDownloadError as e:
            raise AuroraXDownloadError(e) from e
        except SRSAPIError as e:
            raise AuroraXAPIError(e) from e

    def get_urls(self,
                 dataset_name: str,
                 start: datetime.datetime,
                 end: datetime.datetime,
                 site_uid: Optional[str] = None,
                 device_uid: Optional[str] = None,
                 timeout: Optional[int] = None) -> FileListingResponse:
        """
        Get URLs of data files

        The parameters `dataset_name`, `start`, and `end` are required. All other parameters
        are optional.

        Note that usage of the site and device UID filters applies differently to some datasets.
        For example, both fields can be used for most raw and keogram data, but only site UID can
        be used for skymap datasets, and only device UID can be used for calibration datasets. If 
        fields are specified during a call in which site or device UID is not used, a UserWarning
        is display to provide the user with feedback about this detail.

        Args:
            dataset_name (str): 
                Name of the dataset to download data for. Use the `list_datasets()` function
                to get the possible values for this parameter. One example is "THEMIS_ASI_RAW". 
                Note that dataset names are case sensitive. This parameter is required.

            start (datetime.datetime): 
                Start timestamp to use (inclusive), expected to be in UTC. Any timezone data 
                will be ignored. This parameter is required.

            end (datetime.datetime): 
                End timestamp to use (inclusive), expected to be in UTC. Any timezone data 
                will be ignored. This parameter is required.

            site_uid (str): 
                The site UID to filter for. If specified, data will be downloaded for only the 
                site matching the given value. If excluded, data for all available sites will 
                be downloaded. An example value could be 'atha', meaning all data from the 
                Athabasca observatory will be downloaded for the given dataset name, start, and 
                end times. This parameter is optional.

            device_uid (str): 
                The device UID to filter for. If specified, data will be downloaded for only the
                device matching the given value. If excluded, data for all available devices will
                be downloaded. An example value could be 'themis02', meaning all data matching that
                device will be downloaded for the given dataset name, start, and end times. This
                parameter is optional.

            timeout (int): 
                Represents how many seconds to wait for the API to send data before giving up. The 
                default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
                object. This parameter is optional.
    
        Returns:
            A [`FileListingResponse`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileListingResponse)
            object containing a list of the available URLs, among other values.

        Raises:
            pyaurorax.exceptions.AuroraXAPIError: an API error was encountered
        """
        try:
            return self.__aurorax_obj.srs_obj.data.get_urls(
                dataset_name,
                start,
                end,
                site_uid=site_uid,
                device_uid=device_uid,
                timeout=timeout,
            )
        except SRSAPIError as e:
            raise AuroraXAPIError(e) from e

    def read(self,
             dataset: Dataset,
             file_list: Union[List[str], List[Path], str, Path],
             n_parallel: int = 1,
             first_record: bool = False,
             no_metadata: bool = False,
             start_time: Optional[datetime.datetime] = None,
             end_time: Optional[datetime.datetime] = None,
             quiet: bool = False) -> Data:
        """
        Read in data files for a given dataset. Note that only one type of dataset's data
        should be read in using a single call.

        Args:
            dataset (Dataset): 
                The dataset object for which the files are associated with. This parameter is
                required.
            
            file_list (List[str], List[Path], str, Path): 
                The files to read in. Absolute paths are recommended, but not technically
                necessary. This can be a single string for a file, or a list of strings to read
                in multiple files. This parameter is required.

            n_parallel (int): 
                Number of data files to read in parallel using multiprocessing. Default value 
                is 1. Adjust according to your computer's available resources. This parameter 
                is optional.
            
            first_record (bool): 
                Only read in the first record in each file. This is the same as the first_frame
                parameter in the themis-imager-readfile and trex-imager-readfile libraries, and
                is a read optimization if you only need one image per minute, as opposed to the
                full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
            
            no_metadata (bool): 
                Skip reading of metadata. This is a minor optimization if the metadata is not needed.
                Default is `False`. This parameter is optional.

            start_time (datetime.datetime): 
                The start timestamp to read data onwards from (inclusive). This can be utilized to 
                read a portion of a data file, and could be paired with the `end_time` parameter. 
                This tends to be utilized for datasets that are hour or day-long files where it is 
                possible to only read a smaller bit of that file. An example is the TREx Spectrograph 
                processed data (1 hour files), or the riometer data (1 day files). If not supplied, 
                it will assume the start time is the timestamp of the first record in the first 
                file supplied (ie. beginning of the supplied data). This parameter is optional.

            end_time (datetime.datetime): 
                The end timestamp to read data up to (inclusive). This can be utilized to read a 
                portion of a data file, and could be paired with the `start_time` parameter. This 
                tends to be utilized for datasets that are hour or day-long files where it is possible 
                to only read a smaller bit of that file. An example is the TREx Spectrograph processed 
                data (1 hour files), or the riometer data (1 day files). If not supplied, it will
                it will assume the end time is the timestamp of the last record in the last file
                supplied (ie. end of the supplied data). This parameter is optional.

            quiet (bool): 
                Do not print out errors while reading data files, if any are encountered. Any files
                that encounter errors will be, as usual, accessible via the `problematic_files` 
                attribute of the returned `Data` object. This parameter is optional.
        
        Returns:
            A [`Data`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.Data) 
            object containing the data read in, among other values.
        
        Raises:
            pyaurorax.exceptions.AuroraXUnsupportedReadError: an unsupported dataset was used when
                trying to read files.
            pyaurorax.exceptions.AuroraXError: a generic read error was encountered

        Notes:
        ---------
        For users who are familiar with the themis-imager-readfile and trex-imager-readfile
        libraries, the read function provides a near-identical usage. Further improvements have 
        been integrated, and those libraries are anticipated to be deprecated at some point in the
        future.
        """
        # NOTE: we do not wrap the exceptions here, instead we pass the call along
        # to the ReadManager object since the method and exception catching is
        # implemented there. No need to duplicate the exception handling logic.
        return self.__readers.read(
            dataset,
            file_list,
            n_parallel=n_parallel,
            first_record=first_record,
            no_metadata=no_metadata,
            start_time=start_time,
            end_time=end_time,
            quiet=quiet,
        )

    def download_best_skymap(
        self,
        dataset_name: str,
        site_uid: str,
        timestamp: datetime.datetime,
        timeout: Optional[int] = None,
        overwrite: bool = False,
    ) -> FileDownloadResult:
        """
        Download the skymap file that best matches the parameters supplied.

        Args:
            dataset_name (str): 
                Name of the dataset to download data for. Use the `list_datasets()` function
                to get the possible values for this parameter. One example is "THEMIS_ASI_SKYMAP_IDLSAV". 
                Note that dataset names are case sensitive. This parameter is required.

            site_uid (str): 
                The site UID to evaluate.

            timestamp (datetime.datetime): 
                The timestamp to use for deciding the best skymap, expected to be in UTC. Any timezone 
                data will be ignored. This parameter is required.

            timeout (int): 
                Represents how many seconds to wait for the API to send data before giving up. The 
                default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
                object. This parameter is optional.

        Returns:
            A [`FileDownloadResult`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileDownloadResult) 
            object containing details about what data files were downloaded.

        Raises:
            ValueError: issue with supplied timestamp
            pyaurorax.exceptions.AuroraXAPIError: an API error was encountered        
        """
        # get list of all skymap urls for the dataset and site
        start_dt = datetime.datetime(2000, 1, 1)
        end_dt = datetime.datetime.now() + datetime.timedelta(days=5)
        file_listing_obj = self.get_urls(dataset_name, start_dt, end_dt, site_uid=site_uid, timeout=timeout)

        # filter down and find the best skymap for the timestamp supplied
        best_skymap_filename = None
        for url in file_listing_obj.urls:
            # extract start date for this skymap
            url_short = url.replace(file_listing_obj.path_prefix + "/", "")

            # parse filename into several values
            filename_split = os.path.basename(url_short).split('_')
            filename_times_split = filename_split[3].split('-')
            valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d")

            # check start time
            if (timestamp >= valid_interval_start_dt):
                # valid
                #
                # NOTE: this works because of the order that the list is in already
                best_skymap_filename = url

        # check if we found a skymap
        if (best_skymap_filename is None):
            raise ValueError("Unable to determine a skymap recommendation")

        # set the filename
        file_listing_obj.urls = [best_skymap_filename]
        download_obj = self.download_using_urls(
            file_listing_obj,
            progress_bar_disable=True,
            overwrite=overwrite,
            timeout=timeout,
        )

        # return
        return download_obj

    def download_best_flatfield_calibration(
        self,
        dataset_name: str,
        device_uid: str,
        timestamp: datetime.datetime,
        timeout: Optional[int] = None,
        overwrite: bool = False,
    ) -> FileDownloadResult:
        """
        Download the flatfield calibration file that best matches the parameters supplied.

        Args:
            dataset_name (str): 
                Name of the dataset to download data for. Use the `list_datasets()` function
                to get the possible values for this parameter. One example is "THEMIS_ASI_SKYMAP_IDLSAV". 
                Note that dataset names are case sensitive. This parameter is required.

            device_uid (str): 
                The device UID to evaluate.

            timestamp (datetime.datetime): 
                The timestamp to use for deciding the best skymap, expected to be in UTC. Any timezone 
                data will be ignored. This parameter is required.

            timeout (int): 
                Represents how many seconds to wait for the API to send data before giving up. The 
                default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
                object. This parameter is optional.

        Returns:
            A [`FileDownloadResult`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileDownloadResult) 
            object containing details about what data files were downloaded.

        Raises:
            ValueError: issue with supplied timestamp
            pyaurorax.exceptions.AuroraXAPIError: an API error was encountered        
        """
        # get list of all flatfield urls for the dataset and device
        start_dt = datetime.datetime(2000, 1, 1)
        end_dt = datetime.datetime.now() + datetime.timedelta(days=5)
        file_listing_obj = self.get_urls(dataset_name, start_dt, end_dt, device_uid=device_uid, timeout=timeout)

        # filter down and find the best skymap for the timestamp supplied
        best_cal_filename = None
        for url in file_listing_obj.urls:
            # extract start date for this skymap
            url_short = url.replace(file_listing_obj.path_prefix + "/", "")

            # parse filename into several values
            filename_split = os.path.basename(url_short).split('_')
            filename_times_split = filename_split[3].split('-')
            valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d")

            # check start time
            if (timestamp >= valid_interval_start_dt):
                # valid
                #
                # NOTE: this works because of the order that the list is in already
                best_cal_filename = url

        # check if we found a skymap
        if (best_cal_filename is None):
            raise ValueError("Unable to determine a flatfield calibration recommendation")

        # set the filename
        file_listing_obj.urls = [best_cal_filename]
        download_obj = self.download_using_urls(
            file_listing_obj,
            progress_bar_disable=True,
            overwrite=overwrite,
            timeout=timeout,
        )

        # return
        return download_obj

    def download_best_rayleighs_calibration(
        self,
        dataset_name: str,
        device_uid: str,
        timestamp: datetime.datetime,
        timeout: Optional[int] = None,
        overwrite: bool = False,
    ) -> FileDownloadResult:
        """
        Download the Rayleighs calibration file that best matches the parameters supplied.

        Args:
            dataset_name (str): 
                Name of the dataset to download data for. Use the `list_datasets()` function
                to get the possible values for this parameter. One example is "REGO_CALIBRATION_RAYLEIGHS_IDLSAV". 
                Note that dataset names are case sensitive. This parameter is required.

            device_uid (str): 
                The device UID to evaluate.

            timestamp (datetime.datetime): 
                The timestamp to use for deciding the best calibration file, expected to be in 
                UTC. Any timezone data will be ignored. This parameter is required.

            timeout (int): 
                Represents how many seconds to wait for the API to send data before giving up. The 
                default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
                object. This parameter is optional.

        Returns:
            A [`FileDownloadResult`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileDownloadResult) 
            object containing details about what data files were downloaded.

        Raises:
            ValueError: issue with supplied timestamp
            pyaurorax.exceptions.AuroraXAPIError: an API error was encountered        
        """
        # get list of all rayleighs urls for the dataset and device
        start_dt = datetime.datetime(2000, 1, 1)
        end_dt = datetime.datetime.now() + datetime.timedelta(days=5)
        file_listing_obj = self.get_urls(dataset_name, start_dt, end_dt, device_uid=device_uid, timeout=timeout)

        # filter down and find the best skymap for the timestamp supplied
        best_cal_filename = None
        for url in file_listing_obj.urls:
            # extract start date for this skymap
            url_short = url.replace(file_listing_obj.path_prefix + "/", "")

            # parse filename into several values
            filename_split = os.path.basename(url_short).split('_')
            filename_times_split = filename_split[3].split('-')
            valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d")

            # check start time
            if (timestamp >= valid_interval_start_dt):
                # valid
                #
                # NOTE: this works because of the order that the list is in already
                best_cal_filename = url

        # check if we found a skymap
        if (best_cal_filename is None):
            raise ValueError("Unable to determine a Rayleighs calibration recommendation")

        # set the filename
        file_listing_obj.urls = [best_cal_filename]
        download_obj = self.download_using_urls(
            file_listing_obj,
            progress_bar_disable=True,
            overwrite=overwrite,
            timeout=timeout,
        )

        # return
        return download_obj

The UCalgaryManager object is initialized within every PyAuroraX object. It acts as a way to access the submodules and carry over configuration information in the super class.

Instance variables

prop readers
Expand source code
@property
def readers(self):
    """
    Access to the `read` submodule from within a PyAuroraX object.
    """
    return self.__readers

Access to the pyaurorax.data.ucalgary.read submodule from within a PyAuroraX object.

Methods

def download(self,
dataset_name: str,
start: datetime.datetime,
end: datetime.datetime,
site_uid: str | None = None,
device_uid: str | None = None,
n_parallel: int = 5,
overwrite: bool = False,
progress_bar_disable: bool = False,
progress_bar_ncols: int | None = None,
progress_bar_ascii: str | None = None,
progress_bar_desc: str | None = None,
timeout: int | None = None) ‑> pyucalgarysrs.data.classes.FileDownloadResult
Expand source code
def download(self,
             dataset_name: str,
             start: datetime.datetime,
             end: datetime.datetime,
             site_uid: Optional[str] = None,
             device_uid: Optional[str] = None,
             n_parallel: int = __DEFAULT_DOWNLOAD_N_PARALLEL,
             overwrite: bool = False,
             progress_bar_disable: bool = False,
             progress_bar_ncols: Optional[int] = None,
             progress_bar_ascii: Optional[str] = None,
             progress_bar_desc: Optional[str] = None,
             timeout: Optional[int] = None) -> FileDownloadResult:
    """
    Download data from the UCalgary Space Remote Sensing Open Data Platform.

    The parameters `dataset_name`, `start`, and `end` are required. All other parameters
    are optional.

    Note that usage of the site and device UID filters applies differently to some datasets.
    For example, both fields can be used for most raw and keogram data, but only site UID can
    be used for skymap datasets, and only device UID can be used for calibration datasets. If 
    fields are specified during a call in which site or device UID is not used, a UserWarning
    is display to provide the user with feedback about this detail.

    Args:
        dataset_name (str): 
            Name of the dataset to download data for. Use the `list_datasets()` function
            to get the possible values for this parameter. One example is "THEMIS_ASI_RAW". 
            Note that dataset names are case sensitive. This parameter is required.

        start (datetime.datetime): 
            Start timestamp to use (inclusive), expected to be in UTC. Any timezone data 
            will be ignored. This parameter is required.

        end (datetime.datetime): 
            End timestamp to use (inclusive), expected to be in UTC. Any timezone data 
            will be ignored. This parameter is required.

        site_uid (str): 
            The site UID to filter for. If specified, data will be downloaded for only the 
            site matching the given value. If excluded, data for all available sites will 
            be downloaded. An example value could be 'atha', meaning all data from the 
            Athabasca observatory will be downloaded for the given dataset name, start, and 
            end times. This parameter is optional.

        device_uid (str): 
            The device UID to filter for. If specified, data will be downloaded for only the
            device matching the given value. If excluded, data for all available devices will
            be downloaded. An example value could be 'themis02', meaning all data matching that
            device will be downloaded for the given dataset name, start, and end times. This
            parameter is optional.

        n_parallel (int): 
            Number of data files to download in parallel. Default value is 5. Adjust as needed 
            for your internet connection. This parameter is optional.

        overwrite (bool): 
            By default, data will not be re-downloaded if it already exists locally. Use 
            the `overwrite` parameter to force re-downloading. Default is `False`. This 
            parameter is optional.

        progress_bar_disable (bool): 
            Disable the progress bar. Default is `False`. This parameter is optional.

        progress_bar_ncols (int): 
            Number of columns for the progress bar (straight passthrough of the `ncols` 
            parameter in a tqdm progress bar). This parameter is optional. See Notes section
            below for further information.
        
        progress_bar_ascii (str): 
            ASCII value to use when constructing the visual aspect of the progress bar (straight 
            passthrough of the `ascii` parameter in a tqdm progress bar). This parameter is 
            optional. See Notes section below for further details.

        timeout (int): 
            Represents how many seconds to wait for the API to send data before giving up. The 
            default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
            object. This parameter is optional.

    Returns:
        A [`FileDownloadResult`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileDownloadResult) 
        object containing details about what data files were downloaded.

    Raises:
        pyaurorax.exceptions.AuroraXDownloadError: an error was encountered while downloading a 
            specific file
        pyaurorax.exceptions.AuroraXAPIError: an API error was encountered

    Notes:
    --------
    The `progress_bar_*` parameters can be used to enable/disable/adjust the progress bar. 
    Excluding the `progress_bar_disable` parameter, all others are straight pass-throughs 
    to the tqdm progress bar function. The `progress_bar_ncols` parameter allows for 
    adjusting the width. The `progress_bar_ascii` parameter allows for adjusting the appearance 
    of the progress bar. And the `progress_bar_desc` parameter allows for adjusting the 
    description at the beginning of the progress bar. Further details can be found on the
    [tqdm documentation](https://tqdm.github.io/docs/tqdm/#tqdm-objects).

    Data downloading will use the `download_data_root_path` variable within the super class'
    object ([`PyAuroraX`](../../index.html#pyaurorax.PyAuroraX)) to determine where to save data to. If 
    you'd like to change this path to somewhere else you can change that variable before your
    download() call, like so:

    ```python
    import pyaurorax
    aurorax = pyaurorax.PyAuroraX()
    aurorax.data_download_root_path = "some_new_path"
    aurorax.data.download(dataset_name, start, end)
    ```
    """
    try:
        return self.__aurorax_obj.srs_obj.data.download(
            dataset_name,
            start,
            end,
            site_uid=site_uid,
            device_uid=device_uid,
            n_parallel=n_parallel,
            overwrite=overwrite,
            progress_bar_disable=progress_bar_disable,
            progress_bar_ncols=progress_bar_ncols,
            progress_bar_ascii=progress_bar_ascii,
            progress_bar_desc=progress_bar_desc,
            timeout=timeout,
        )
    except SRSDownloadError as e:
        raise AuroraXDownloadError(e) from e
    except SRSAPIError as e:
        raise AuroraXAPIError(e) from e

Download data from the UCalgary Space Remote Sensing Open Data Platform.

The parameters dataset_name, start, and end are required. All other parameters are optional.

Note that usage of the site and device UID filters applies differently to some datasets. For example, both fields can be used for most raw and keogram data, but only site UID can be used for skymap datasets, and only device UID can be used for calibration datasets. If fields are specified during a call in which site or device UID is not used, a UserWarning is display to provide the user with feedback about this detail.

Args

dataset_name : str
Name of the dataset to download data for. Use the list_datasets() function to get the possible values for this parameter. One example is "THEMIS_ASI_RAW". Note that dataset names are case sensitive. This parameter is required.
start : datetime.datetime
Start timestamp to use (inclusive), expected to be in UTC. Any timezone data will be ignored. This parameter is required.
end : datetime.datetime
End timestamp to use (inclusive), expected to be in UTC. Any timezone data will be ignored. This parameter is required.
site_uid : str
The site UID to filter for. If specified, data will be downloaded for only the site matching the given value. If excluded, data for all available sites will be downloaded. An example value could be 'atha', meaning all data from the Athabasca observatory will be downloaded for the given dataset name, start, and end times. This parameter is optional.
device_uid : str
The device UID to filter for. If specified, data will be downloaded for only the device matching the given value. If excluded, data for all available devices will be downloaded. An example value could be 'themis02', meaning all data matching that device will be downloaded for the given dataset name, start, and end times. This parameter is optional.
n_parallel : int
Number of data files to download in parallel. Default value is 5. Adjust as needed for your internet connection. This parameter is optional.
overwrite : bool
By default, data will not be re-downloaded if it already exists locally. Use the overwrite parameter to force re-downloading. Default is False. This parameter is optional.
progress_bar_disable : bool
Disable the progress bar. Default is False. This parameter is optional.
progress_bar_ncols : int
Number of columns for the progress bar (straight passthrough of the ncols parameter in a tqdm progress bar). This parameter is optional. See Notes section below for further information.
progress_bar_ascii : str
ASCII value to use when constructing the visual aspect of the progress bar (straight passthrough of the ascii parameter in a tqdm progress bar). This parameter is optional. See Notes section below for further details.
timeout : int
Represents how many seconds to wait for the API to send data before giving up. The default is 10 seconds, or the api_timeout value in the super class' PyAuroraX object. This parameter is optional.

Returns

A FileDownloadResult object containing details about what data files were downloaded.

Raises

AuroraXDownloadError
an error was encountered while downloading a specific file
AuroraXAPIError
an API error was encountered

Notes:

The progress_bar_* parameters can be used to enable/disable/adjust the progress bar. Excluding the progress_bar_disable parameter, all others are straight pass-throughs to the tqdm progress bar function. The progress_bar_ncols parameter allows for adjusting the width. The progress_bar_ascii parameter allows for adjusting the appearance of the progress bar. And the progress_bar_desc parameter allows for adjusting the description at the beginning of the progress bar. Further details can be found on the tqdm documentation.

Data downloading will use the download_data_root_path variable within the super class' object (PyAuroraX) to determine where to save data to. If you'd like to change this path to somewhere else you can change that variable before your download() call, like so:

import pyaurorax
aurorax = pyaurorax.PyAuroraX()
aurorax.data_download_root_path = "some_new_path"
aurorax.data.download(dataset_name, start, end)
def download_best_flatfield_calibration(self,
dataset_name: str,
device_uid: str,
timestamp: datetime.datetime,
timeout: int | None = None,
overwrite: bool = False) ‑> pyucalgarysrs.data.classes.FileDownloadResult
Expand source code
def download_best_flatfield_calibration(
    self,
    dataset_name: str,
    device_uid: str,
    timestamp: datetime.datetime,
    timeout: Optional[int] = None,
    overwrite: bool = False,
) -> FileDownloadResult:
    """
    Download the flatfield calibration file that best matches the parameters supplied.

    Args:
        dataset_name (str): 
            Name of the dataset to download data for. Use the `list_datasets()` function
            to get the possible values for this parameter. One example is "THEMIS_ASI_SKYMAP_IDLSAV". 
            Note that dataset names are case sensitive. This parameter is required.

        device_uid (str): 
            The device UID to evaluate.

        timestamp (datetime.datetime): 
            The timestamp to use for deciding the best skymap, expected to be in UTC. Any timezone 
            data will be ignored. This parameter is required.

        timeout (int): 
            Represents how many seconds to wait for the API to send data before giving up. The 
            default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
            object. This parameter is optional.

    Returns:
        A [`FileDownloadResult`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileDownloadResult) 
        object containing details about what data files were downloaded.

    Raises:
        ValueError: issue with supplied timestamp
        pyaurorax.exceptions.AuroraXAPIError: an API error was encountered        
    """
    # get list of all flatfield urls for the dataset and device
    start_dt = datetime.datetime(2000, 1, 1)
    end_dt = datetime.datetime.now() + datetime.timedelta(days=5)
    file_listing_obj = self.get_urls(dataset_name, start_dt, end_dt, device_uid=device_uid, timeout=timeout)

    # filter down and find the best skymap for the timestamp supplied
    best_cal_filename = None
    for url in file_listing_obj.urls:
        # extract start date for this skymap
        url_short = url.replace(file_listing_obj.path_prefix + "/", "")

        # parse filename into several values
        filename_split = os.path.basename(url_short).split('_')
        filename_times_split = filename_split[3].split('-')
        valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d")

        # check start time
        if (timestamp >= valid_interval_start_dt):
            # valid
            #
            # NOTE: this works because of the order that the list is in already
            best_cal_filename = url

    # check if we found a skymap
    if (best_cal_filename is None):
        raise ValueError("Unable to determine a flatfield calibration recommendation")

    # set the filename
    file_listing_obj.urls = [best_cal_filename]
    download_obj = self.download_using_urls(
        file_listing_obj,
        progress_bar_disable=True,
        overwrite=overwrite,
        timeout=timeout,
    )

    # return
    return download_obj

Download the flatfield calibration file that best matches the parameters supplied.

Args

dataset_name : str
Name of the dataset to download data for. Use the list_datasets() function to get the possible values for this parameter. One example is "THEMIS_ASI_SKYMAP_IDLSAV". Note that dataset names are case sensitive. This parameter is required.
device_uid : str
The device UID to evaluate.
timestamp : datetime.datetime
The timestamp to use for deciding the best skymap, expected to be in UTC. Any timezone data will be ignored. This parameter is required.
timeout : int
Represents how many seconds to wait for the API to send data before giving up. The default is 10 seconds, or the api_timeout value in the super class' PyAuroraX object. This parameter is optional.

Returns

A FileDownloadResult object containing details about what data files were downloaded.

Raises

ValueError
issue with supplied timestamp
AuroraXAPIError
an API error was encountered
def download_best_rayleighs_calibration(self,
dataset_name: str,
device_uid: str,
timestamp: datetime.datetime,
timeout: int | None = None,
overwrite: bool = False) ‑> pyucalgarysrs.data.classes.FileDownloadResult
Expand source code
def download_best_rayleighs_calibration(
    self,
    dataset_name: str,
    device_uid: str,
    timestamp: datetime.datetime,
    timeout: Optional[int] = None,
    overwrite: bool = False,
) -> FileDownloadResult:
    """
    Download the Rayleighs calibration file that best matches the parameters supplied.

    Args:
        dataset_name (str): 
            Name of the dataset to download data for. Use the `list_datasets()` function
            to get the possible values for this parameter. One example is "REGO_CALIBRATION_RAYLEIGHS_IDLSAV". 
            Note that dataset names are case sensitive. This parameter is required.

        device_uid (str): 
            The device UID to evaluate.

        timestamp (datetime.datetime): 
            The timestamp to use for deciding the best calibration file, expected to be in 
            UTC. Any timezone data will be ignored. This parameter is required.

        timeout (int): 
            Represents how many seconds to wait for the API to send data before giving up. The 
            default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
            object. This parameter is optional.

    Returns:
        A [`FileDownloadResult`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileDownloadResult) 
        object containing details about what data files were downloaded.

    Raises:
        ValueError: issue with supplied timestamp
        pyaurorax.exceptions.AuroraXAPIError: an API error was encountered        
    """
    # get list of all rayleighs urls for the dataset and device
    start_dt = datetime.datetime(2000, 1, 1)
    end_dt = datetime.datetime.now() + datetime.timedelta(days=5)
    file_listing_obj = self.get_urls(dataset_name, start_dt, end_dt, device_uid=device_uid, timeout=timeout)

    # filter down and find the best skymap for the timestamp supplied
    best_cal_filename = None
    for url in file_listing_obj.urls:
        # extract start date for this skymap
        url_short = url.replace(file_listing_obj.path_prefix + "/", "")

        # parse filename into several values
        filename_split = os.path.basename(url_short).split('_')
        filename_times_split = filename_split[3].split('-')
        valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d")

        # check start time
        if (timestamp >= valid_interval_start_dt):
            # valid
            #
            # NOTE: this works because of the order that the list is in already
            best_cal_filename = url

    # check if we found a skymap
    if (best_cal_filename is None):
        raise ValueError("Unable to determine a Rayleighs calibration recommendation")

    # set the filename
    file_listing_obj.urls = [best_cal_filename]
    download_obj = self.download_using_urls(
        file_listing_obj,
        progress_bar_disable=True,
        overwrite=overwrite,
        timeout=timeout,
    )

    # return
    return download_obj

Download the Rayleighs calibration file that best matches the parameters supplied.

Args

dataset_name : str
Name of the dataset to download data for. Use the list_datasets() function to get the possible values for this parameter. One example is "REGO_CALIBRATION_RAYLEIGHS_IDLSAV". Note that dataset names are case sensitive. This parameter is required.
device_uid : str
The device UID to evaluate.
timestamp : datetime.datetime
The timestamp to use for deciding the best calibration file, expected to be in UTC. Any timezone data will be ignored. This parameter is required.
timeout : int
Represents how many seconds to wait for the API to send data before giving up. The default is 10 seconds, or the api_timeout value in the super class' PyAuroraX object. This parameter is optional.

Returns

A FileDownloadResult object containing details about what data files were downloaded.

Raises

ValueError
issue with supplied timestamp
AuroraXAPIError
an API error was encountered
def download_best_skymap(self,
dataset_name: str,
site_uid: str,
timestamp: datetime.datetime,
timeout: int | None = None,
overwrite: bool = False) ‑> pyucalgarysrs.data.classes.FileDownloadResult
Expand source code
def download_best_skymap(
    self,
    dataset_name: str,
    site_uid: str,
    timestamp: datetime.datetime,
    timeout: Optional[int] = None,
    overwrite: bool = False,
) -> FileDownloadResult:
    """
    Download the skymap file that best matches the parameters supplied.

    Args:
        dataset_name (str): 
            Name of the dataset to download data for. Use the `list_datasets()` function
            to get the possible values for this parameter. One example is "THEMIS_ASI_SKYMAP_IDLSAV". 
            Note that dataset names are case sensitive. This parameter is required.

        site_uid (str): 
            The site UID to evaluate.

        timestamp (datetime.datetime): 
            The timestamp to use for deciding the best skymap, expected to be in UTC. Any timezone 
            data will be ignored. This parameter is required.

        timeout (int): 
            Represents how many seconds to wait for the API to send data before giving up. The 
            default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
            object. This parameter is optional.

    Returns:
        A [`FileDownloadResult`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileDownloadResult) 
        object containing details about what data files were downloaded.

    Raises:
        ValueError: issue with supplied timestamp
        pyaurorax.exceptions.AuroraXAPIError: an API error was encountered        
    """
    # get list of all skymap urls for the dataset and site
    start_dt = datetime.datetime(2000, 1, 1)
    end_dt = datetime.datetime.now() + datetime.timedelta(days=5)
    file_listing_obj = self.get_urls(dataset_name, start_dt, end_dt, site_uid=site_uid, timeout=timeout)

    # filter down and find the best skymap for the timestamp supplied
    best_skymap_filename = None
    for url in file_listing_obj.urls:
        # extract start date for this skymap
        url_short = url.replace(file_listing_obj.path_prefix + "/", "")

        # parse filename into several values
        filename_split = os.path.basename(url_short).split('_')
        filename_times_split = filename_split[3].split('-')
        valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d")

        # check start time
        if (timestamp >= valid_interval_start_dt):
            # valid
            #
            # NOTE: this works because of the order that the list is in already
            best_skymap_filename = url

    # check if we found a skymap
    if (best_skymap_filename is None):
        raise ValueError("Unable to determine a skymap recommendation")

    # set the filename
    file_listing_obj.urls = [best_skymap_filename]
    download_obj = self.download_using_urls(
        file_listing_obj,
        progress_bar_disable=True,
        overwrite=overwrite,
        timeout=timeout,
    )

    # return
    return download_obj

Download the skymap file that best matches the parameters supplied.

Args

dataset_name : str
Name of the dataset to download data for. Use the list_datasets() function to get the possible values for this parameter. One example is "THEMIS_ASI_SKYMAP_IDLSAV". Note that dataset names are case sensitive. This parameter is required.
site_uid : str
The site UID to evaluate.
timestamp : datetime.datetime
The timestamp to use for deciding the best skymap, expected to be in UTC. Any timezone data will be ignored. This parameter is required.
timeout : int
Represents how many seconds to wait for the API to send data before giving up. The default is 10 seconds, or the api_timeout value in the super class' PyAuroraX object. This parameter is optional.

Returns

A FileDownloadResult object containing details about what data files were downloaded.

Raises

ValueError
issue with supplied timestamp
AuroraXAPIError
an API error was encountered
def download_using_urls(self,
file_listing_response: pyucalgarysrs.data.classes.FileListingResponse,
n_parallel: int = 5,
overwrite: bool = False,
progress_bar_disable: bool = False,
progress_bar_ncols: int | None = None,
progress_bar_ascii: str | None = None,
progress_bar_desc: str | None = None,
timeout: int | None = None) ‑> pyucalgarysrs.data.classes.FileDownloadResult
Expand source code
def download_using_urls(self,
                        file_listing_response: FileListingResponse,
                        n_parallel: int = __DEFAULT_DOWNLOAD_N_PARALLEL,
                        overwrite: bool = False,
                        progress_bar_disable: bool = False,
                        progress_bar_ncols: Optional[int] = None,
                        progress_bar_ascii: Optional[str] = None,
                        progress_bar_desc: Optional[str] = None,
                        timeout: Optional[int] = None) -> FileDownloadResult:
    """
    Download data from the UCalgary Space Remote Sensing Open Data Platform using 
    a FileListingResponse object. This would be used in cases where more customization 
    is needed than the generic `download()` function. 
    
    One example of using this function would start by using `get_urls()` to retrieve the
    list of URLs available for download, then further process this list to fewer files
    based on some other requirement (ie. time down-sampling such as one file per hour). 
    Lastly using this function to download the new custom set URLs.

    Args:
        file_listing_response (FileListingResponse): 
            A [`FileListingResponse`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileListingResponse) 
            object returned from a `get_urls()` call, which contains a list of URLs to download 
            for a specific dataset. This parameter is required.

        n_parallel (int): 
            Number of data files to download in parallel. Default value is 5. Adjust as needed 
            for your internet connection. This parameter is optional.

        overwrite (bool): 
            By default, data will not be re-downloaded if it already exists locally. Use 
            the `overwrite` parameter to force re-downloading. Default is `False`. This 
            parameter is optional.

        progress_bar_disable (bool): 
            Disable the progress bar. Default is `False`. This parameter is optional.

        progress_bar_ncols (int): 
            Number of columns for the progress bar (straight passthrough of the `ncols` 
            parameter in a tqdm progress bar). This parameter is optional. See Notes section
            below for further information.
        
        progress_bar_ascii (str): 
            ASCII value to use when constructing the visual aspect of the progress bar (straight 
            passthrough of the `ascii` parameter in a tqdm progress bar). This parameter is 
            optional. See Notes section below for further details.

        timeout (int): 
            Represents how many seconds to wait for the API to send data before giving up. The 
            default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
            object. This parameter is optional.

    Returns:
        A [`FileDownloadResult`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileDownloadResult) 
        object containing details about what data files were downloaded.

    Raises:
        pyaurorax.exceptions.AuroraXDownloadError: an error was encountered while downloading a 
            specific file
        pyaurorax.exceptions.AuroraXAPIError: an API error was encountered

    Notes:
    --------
    The `progress_bar_*` parameters can be used to enable/disable/adjust the progress bar. 
    Excluding the `progress_bar_disable` parameter, all others are straight pass-throughs 
    to the tqdm progress bar function. The `progress_bar_ncols` parameter allows for 
    adjusting the width. The `progress_bar_ascii` parameter allows for adjusting the appearance 
    of the progress bar. And the `progress_bar_desc` parameter allows for adjusting the 
    description at the beginning of the progress bar. Further details can be found on the
    [tqdm documentation](https://tqdm.github.io/docs/tqdm/#tqdm-objects).

    Data downloading will use the `download_data_root_path` variable within the super class'
    object ([`PyAuroraX`](../../index.html#pyaurorax.PyAuroraX)) to determine where to save data to. If 
    you'd like to change this path to somewhere else you can change that variable before your
    download() call, like so:

    ```python
    import pyaurorax
    aurorax = pyaurorax.PyAuroraX()
    aurorax.data_download_root_path = "some_new_path"
    aurorax.data.download(dataset_name, start, end)
    ```
    """
    try:
        return self.__aurorax_obj.srs_obj.data.download_using_urls(
            file_listing_response,
            n_parallel=n_parallel,
            overwrite=overwrite,
            progress_bar_disable=progress_bar_disable,
            progress_bar_ncols=progress_bar_ncols,
            progress_bar_ascii=progress_bar_ascii,
            progress_bar_desc=progress_bar_desc,
            timeout=timeout,
        )
    except SRSDownloadError as e:
        raise AuroraXDownloadError(e) from e
    except SRSAPIError as e:
        raise AuroraXAPIError(e) from e

Download data from the UCalgary Space Remote Sensing Open Data Platform using a FileListingResponse object. This would be used in cases where more customization is needed than the generic download() function.

One example of using this function would start by using get_urls() to retrieve the list of URLs available for download, then further process this list to fewer files based on some other requirement (ie. time down-sampling such as one file per hour). Lastly using this function to download the new custom set URLs.

Args

file_listing_response : FileListingResponse
A FileListingResponse object returned from a get_urls() call, which contains a list of URLs to download for a specific dataset. This parameter is required.
n_parallel : int
Number of data files to download in parallel. Default value is 5. Adjust as needed for your internet connection. This parameter is optional.
overwrite : bool
By default, data will not be re-downloaded if it already exists locally. Use the overwrite parameter to force re-downloading. Default is False. This parameter is optional.
progress_bar_disable : bool
Disable the progress bar. Default is False. This parameter is optional.
progress_bar_ncols : int
Number of columns for the progress bar (straight passthrough of the ncols parameter in a tqdm progress bar). This parameter is optional. See Notes section below for further information.
progress_bar_ascii : str
ASCII value to use when constructing the visual aspect of the progress bar (straight passthrough of the ascii parameter in a tqdm progress bar). This parameter is optional. See Notes section below for further details.
timeout : int
Represents how many seconds to wait for the API to send data before giving up. The default is 10 seconds, or the api_timeout value in the super class' PyAuroraX object. This parameter is optional.

Returns

A FileDownloadResult object containing details about what data files were downloaded.

Raises

AuroraXDownloadError
an error was encountered while downloading a specific file
AuroraXAPIError
an API error was encountered

Notes:

The progress_bar_* parameters can be used to enable/disable/adjust the progress bar. Excluding the progress_bar_disable parameter, all others are straight pass-throughs to the tqdm progress bar function. The progress_bar_ncols parameter allows for adjusting the width. The progress_bar_ascii parameter allows for adjusting the appearance of the progress bar. And the progress_bar_desc parameter allows for adjusting the description at the beginning of the progress bar. Further details can be found on the tqdm documentation.

Data downloading will use the download_data_root_path variable within the super class' object (PyAuroraX) to determine where to save data to. If you'd like to change this path to somewhere else you can change that variable before your download() call, like so:

import pyaurorax
aurorax = pyaurorax.PyAuroraX()
aurorax.data_download_root_path = "some_new_path"
aurorax.data.download(dataset_name, start, end)
def get_dataset(self, name: str, timeout: int | None = None) ‑> pyucalgarysrs.data.classes.Dataset
Expand source code
def get_dataset(self, name: str, timeout: Optional[int] = None) -> Dataset:
    """
    Get a specific dataset

    Args:
        name (str): 
            The dataset name to get. Case is insensitive.
        
        timeout (int): 
            Represents how many seconds to wait for the API to send data before giving up. The 
            default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
            object. This parameter is optional.
        
    Returns:
        The found [`Dataset`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.Dataset)
        object. Raises an exception if not found.
    
    Raises:
        pyaurorax.exceptions.AuroraXAPIError: An API error was encountered.
    """
    try:
        return self.__aurorax_obj.srs_obj.data.get_dataset(name, timeout=timeout)
    except Exception as e:
        raise AuroraXAPIError(e) from e

Get a specific dataset

Args

name : str
The dataset name to get. Case is insensitive.
timeout : int
Represents how many seconds to wait for the API to send data before giving up. The default is 10 seconds, or the api_timeout value in the super class' PyAuroraX object. This parameter is optional.

Returns

The found Dataset object. Raises an exception if not found.

Raises

AuroraXAPIError
An API error was encountered.
def get_urls(self,
dataset_name: str,
start: datetime.datetime,
end: datetime.datetime,
site_uid: str | None = None,
device_uid: str | None = None,
timeout: int | None = None) ‑> pyucalgarysrs.data.classes.FileListingResponse
Expand source code
def get_urls(self,
             dataset_name: str,
             start: datetime.datetime,
             end: datetime.datetime,
             site_uid: Optional[str] = None,
             device_uid: Optional[str] = None,
             timeout: Optional[int] = None) -> FileListingResponse:
    """
    Get URLs of data files

    The parameters `dataset_name`, `start`, and `end` are required. All other parameters
    are optional.

    Note that usage of the site and device UID filters applies differently to some datasets.
    For example, both fields can be used for most raw and keogram data, but only site UID can
    be used for skymap datasets, and only device UID can be used for calibration datasets. If 
    fields are specified during a call in which site or device UID is not used, a UserWarning
    is display to provide the user with feedback about this detail.

    Args:
        dataset_name (str): 
            Name of the dataset to download data for. Use the `list_datasets()` function
            to get the possible values for this parameter. One example is "THEMIS_ASI_RAW". 
            Note that dataset names are case sensitive. This parameter is required.

        start (datetime.datetime): 
            Start timestamp to use (inclusive), expected to be in UTC. Any timezone data 
            will be ignored. This parameter is required.

        end (datetime.datetime): 
            End timestamp to use (inclusive), expected to be in UTC. Any timezone data 
            will be ignored. This parameter is required.

        site_uid (str): 
            The site UID to filter for. If specified, data will be downloaded for only the 
            site matching the given value. If excluded, data for all available sites will 
            be downloaded. An example value could be 'atha', meaning all data from the 
            Athabasca observatory will be downloaded for the given dataset name, start, and 
            end times. This parameter is optional.

        device_uid (str): 
            The device UID to filter for. If specified, data will be downloaded for only the
            device matching the given value. If excluded, data for all available devices will
            be downloaded. An example value could be 'themis02', meaning all data matching that
            device will be downloaded for the given dataset name, start, and end times. This
            parameter is optional.

        timeout (int): 
            Represents how many seconds to wait for the API to send data before giving up. The 
            default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
            object. This parameter is optional.

    Returns:
        A [`FileListingResponse`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.FileListingResponse)
        object containing a list of the available URLs, among other values.

    Raises:
        pyaurorax.exceptions.AuroraXAPIError: an API error was encountered
    """
    try:
        return self.__aurorax_obj.srs_obj.data.get_urls(
            dataset_name,
            start,
            end,
            site_uid=site_uid,
            device_uid=device_uid,
            timeout=timeout,
        )
    except SRSAPIError as e:
        raise AuroraXAPIError(e) from e

Get URLs of data files

The parameters dataset_name, start, and end are required. All other parameters are optional.

Note that usage of the site and device UID filters applies differently to some datasets. For example, both fields can be used for most raw and keogram data, but only site UID can be used for skymap datasets, and only device UID can be used for calibration datasets. If fields are specified during a call in which site or device UID is not used, a UserWarning is display to provide the user with feedback about this detail.

Args

dataset_name : str
Name of the dataset to download data for. Use the list_datasets() function to get the possible values for this parameter. One example is "THEMIS_ASI_RAW". Note that dataset names are case sensitive. This parameter is required.
start : datetime.datetime
Start timestamp to use (inclusive), expected to be in UTC. Any timezone data will be ignored. This parameter is required.
end : datetime.datetime
End timestamp to use (inclusive), expected to be in UTC. Any timezone data will be ignored. This parameter is required.
site_uid : str
The site UID to filter for. If specified, data will be downloaded for only the site matching the given value. If excluded, data for all available sites will be downloaded. An example value could be 'atha', meaning all data from the Athabasca observatory will be downloaded for the given dataset name, start, and end times. This parameter is optional.
device_uid : str
The device UID to filter for. If specified, data will be downloaded for only the device matching the given value. If excluded, data for all available devices will be downloaded. An example value could be 'themis02', meaning all data matching that device will be downloaded for the given dataset name, start, and end times. This parameter is optional.
timeout : int
Represents how many seconds to wait for the API to send data before giving up. The default is 10 seconds, or the api_timeout value in the super class' PyAuroraX object. This parameter is optional.

Returns

A FileListingResponse object containing a list of the available URLs, among other values.

Raises

AuroraXAPIError
an API error was encountered
def is_read_supported(self, dataset_name: str) ‑> bool
Expand source code
def is_read_supported(self, dataset_name: str) -> bool:
    """
    Check if a given dataset has file reading support. 
    
    Not all datasets available in the UCalgary Space Remote Sensing Open Data Platform 
    have special readfile routines in this library. This is because some datasets are 
    in basic formats such as JPG or PNG, so unique functions aren't necessary. We leave 
    it up to the user to open these basic files in whichever way they prefer. Use the 
    `list_supported_read_datasets()` function to see all datasets that have special
    file reading functionality in this library.

    Args:
        dataset_name (str): 
            The dataset name to check if file reading is supported. This parameter 
            is required.
    
    Returns:
        Boolean indicating if file reading is supported.
    """
    return self.__aurorax_obj.srs_obj.data.is_read_supported(dataset_name)

Check if a given dataset has file reading support.

Not all datasets available in the UCalgary Space Remote Sensing Open Data Platform have special readfile routines in this library. This is because some datasets are in basic formats such as JPG or PNG, so unique functions aren't necessary. We leave it up to the user to open these basic files in whichever way they prefer. Use the list_supported_read_datasets() function to see all datasets that have special file reading functionality in this library.

Args

dataset_name : str
The dataset name to check if file reading is supported. This parameter is required.

Returns

Boolean indicating if file reading is supported.

def list_datasets(self, name: str | None = None, timeout: int | None = None) ‑> List[pyucalgarysrs.data.classes.Dataset]
Expand source code
def list_datasets(self, name: Optional[str] = None, timeout: Optional[int] = None) -> List[Dataset]:
    """
    List available datasets

    Args:
        name (str): 
            Supply a name used for filtering. If that name is found in the available dataset 
            names received from the API, it will be included in the results. This parameter is
            optional.
        
        timeout (int): 
            Represents how many seconds to wait for the API to send data before giving up. The 
            default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
            object. This parameter is optional.
        
    Returns:
        A list of [`Dataset`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.Dataset)
        objects.
    
    Raises:
        pyaurorax.exceptions.AuroraXAPIError: An API error was encountered.
    """
    try:
        return self.__aurorax_obj.srs_obj.data.list_datasets(
            name=name,
            timeout=timeout,
            supported_library="pyaurorax",
        )
    except SRSAPIError as e:
        raise AuroraXAPIError(e) from e

List available datasets

Args

name : str
Supply a name used for filtering. If that name is found in the available dataset names received from the API, it will be included in the results. This parameter is optional.
timeout : int
Represents how many seconds to wait for the API to send data before giving up. The default is 10 seconds, or the api_timeout value in the super class' PyAuroraX object. This parameter is optional.

Returns

A list of Dataset objects.

Raises

AuroraXAPIError
An API error was encountered.
def list_observatories(self,
instrument_array: Literal['themis_asi', 'rego', 'trex_rgb', 'trex_nir', 'trex_blue', 'trex_spectrograph'],
uid: str | None = None,
timeout: int | None = None) ‑> List[pyucalgarysrs.data.classes.Observatory]
Expand source code
def list_observatories(self,
                       instrument_array: Literal["themis_asi", "rego", "trex_rgb", "trex_nir", "trex_blue", "trex_spectrograph"],
                       uid: Optional[str] = None,
                       timeout: Optional[int] = None) -> List[Observatory]:
    """
    List information about observatories

    Args:
        instrument_array (str): 
            The instrument array to list observatories for. Valid values are: themis_asi, rego, 
            trex_rgb, trex_nir, trex_blue, and trex_spectrograph.

        uid (str): 
            Supply a observatory unique identifier used for filtering (usually 4-letter site code). If that UID 
            is found in the available observatories received from the API, it will be included in the results. This 
            parameter is optional.
        
        timeout (int): 
            Represents how many seconds to wait for the API to send data before giving up. The 
            default is 10 seconds, or the `api_timeout` value in the super class' `pyaurorax.PyAuroraX`
            object. This parameter is optional.
        
    Returns:
        A list of [`Observatory`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.Observatory)
        objects.
    
    Raises:
        pyaurorax.exceptions.AuroraXAPIError: An API error was encountered.
    """
    try:
        return self.__aurorax_obj.srs_obj.data.list_observatories(instrument_array, uid=uid, timeout=timeout)
    except SRSAPIError as e:
        raise AuroraXAPIError(e) from e

List information about observatories

Args

instrument_array : str
The instrument array to list observatories for. Valid values are: themis_asi, rego, trex_rgb, trex_nir, trex_blue, and trex_spectrograph.
uid : str
Supply a observatory unique identifier used for filtering (usually 4-letter site code). If that UID is found in the available observatories received from the API, it will be included in the results. This parameter is optional.
timeout : int
Represents how many seconds to wait for the API to send data before giving up. The default is 10 seconds, or the api_timeout value in the super class' PyAuroraX object. This parameter is optional.

Returns

A list of Observatory objects.

Raises

AuroraXAPIError
An API error was encountered.
def list_supported_read_datasets(self) ‑> List[str]
Expand source code
def list_supported_read_datasets(self) -> List[str]:
    """
    List the datasets which have file reading capabilities supported.

    Returns:
        A list of the dataset names with file reading support.
    """
    return self.__aurorax_obj.srs_obj.data.list_supported_read_datasets()

List the datasets which have file reading capabilities supported.

Returns

A list of the dataset names with file reading support.

def read(self,
dataset: pyucalgarysrs.data.classes.Dataset,
file_list: List[str] | List[pathlib.Path] | str | pathlib.Path,
n_parallel: int = 1,
first_record: bool = False,
no_metadata: bool = False,
start_time: datetime.datetime | None = None,
end_time: datetime.datetime | None = None,
quiet: bool = False) ‑> pyucalgarysrs.data.classes.Data
Expand source code
def read(self,
         dataset: Dataset,
         file_list: Union[List[str], List[Path], str, Path],
         n_parallel: int = 1,
         first_record: bool = False,
         no_metadata: bool = False,
         start_time: Optional[datetime.datetime] = None,
         end_time: Optional[datetime.datetime] = None,
         quiet: bool = False) -> Data:
    """
    Read in data files for a given dataset. Note that only one type of dataset's data
    should be read in using a single call.

    Args:
        dataset (Dataset): 
            The dataset object for which the files are associated with. This parameter is
            required.
        
        file_list (List[str], List[Path], str, Path): 
            The files to read in. Absolute paths are recommended, but not technically
            necessary. This can be a single string for a file, or a list of strings to read
            in multiple files. This parameter is required.

        n_parallel (int): 
            Number of data files to read in parallel using multiprocessing. Default value 
            is 1. Adjust according to your computer's available resources. This parameter 
            is optional.
        
        first_record (bool): 
            Only read in the first record in each file. This is the same as the first_frame
            parameter in the themis-imager-readfile and trex-imager-readfile libraries, and
            is a read optimization if you only need one image per minute, as opposed to the
            full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
        
        no_metadata (bool): 
            Skip reading of metadata. This is a minor optimization if the metadata is not needed.
            Default is `False`. This parameter is optional.

        start_time (datetime.datetime): 
            The start timestamp to read data onwards from (inclusive). This can be utilized to 
            read a portion of a data file, and could be paired with the `end_time` parameter. 
            This tends to be utilized for datasets that are hour or day-long files where it is 
            possible to only read a smaller bit of that file. An example is the TREx Spectrograph 
            processed data (1 hour files), or the riometer data (1 day files). If not supplied, 
            it will assume the start time is the timestamp of the first record in the first 
            file supplied (ie. beginning of the supplied data). This parameter is optional.

        end_time (datetime.datetime): 
            The end timestamp to read data up to (inclusive). This can be utilized to read a 
            portion of a data file, and could be paired with the `start_time` parameter. This 
            tends to be utilized for datasets that are hour or day-long files where it is possible 
            to only read a smaller bit of that file. An example is the TREx Spectrograph processed 
            data (1 hour files), or the riometer data (1 day files). If not supplied, it will
            it will assume the end time is the timestamp of the last record in the last file
            supplied (ie. end of the supplied data). This parameter is optional.

        quiet (bool): 
            Do not print out errors while reading data files, if any are encountered. Any files
            that encounter errors will be, as usual, accessible via the `problematic_files` 
            attribute of the returned `Data` object. This parameter is optional.
    
    Returns:
        A [`Data`](https://docs-pyucalgarysrs.phys.ucalgary.ca/data/classes.html#pyucalgarysrs.data.classes.Data) 
        object containing the data read in, among other values.
    
    Raises:
        pyaurorax.exceptions.AuroraXUnsupportedReadError: an unsupported dataset was used when
            trying to read files.
        pyaurorax.exceptions.AuroraXError: a generic read error was encountered

    Notes:
    ---------
    For users who are familiar with the themis-imager-readfile and trex-imager-readfile
    libraries, the read function provides a near-identical usage. Further improvements have 
    been integrated, and those libraries are anticipated to be deprecated at some point in the
    future.
    """
    # NOTE: we do not wrap the exceptions here, instead we pass the call along
    # to the ReadManager object since the method and exception catching is
    # implemented there. No need to duplicate the exception handling logic.
    return self.__readers.read(
        dataset,
        file_list,
        n_parallel=n_parallel,
        first_record=first_record,
        no_metadata=no_metadata,
        start_time=start_time,
        end_time=end_time,
        quiet=quiet,
    )

Read in data files for a given dataset. Note that only one type of dataset's data should be read in using a single call.

Args

dataset : Dataset
The dataset object for which the files are associated with. This parameter is required.
file_list : List[str], List[Path], str, Path
The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel : int
Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
first_record : bool
Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata : bool
Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is False. This parameter is optional.
start_time : datetime.datetime
The start timestamp to read data onwards from (inclusive). This can be utilized to read a portion of a data file, and could be paired with the end_time parameter. This tends to be utilized for datasets that are hour or day-long files where it is possible to only read a smaller bit of that file. An example is the TREx Spectrograph processed data (1 hour files), or the riometer data (1 day files). If not supplied, it will assume the start time is the timestamp of the first record in the first file supplied (ie. beginning of the supplied data). This parameter is optional.
end_time : datetime.datetime
The end timestamp to read data up to (inclusive). This can be utilized to read a portion of a data file, and could be paired with the start_time parameter. This tends to be utilized for datasets that are hour or day-long files where it is possible to only read a smaller bit of that file. An example is the TREx Spectrograph processed data (1 hour files), or the riometer data (1 day files). If not supplied, it will it will assume the end time is the timestamp of the last record in the last file supplied (ie. end of the supplied data). This parameter is optional.
quiet : bool
Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the problematic_files attribute of the returned Data object. This parameter is optional.

Returns

A Data object containing the data read in, among other values.

Raises

AuroraXUnsupportedReadError
an unsupported dataset was used when trying to read files.
AuroraXError
a generic read error was encountered

Notes:

For users who are familiar with the themis-imager-readfile and trex-imager-readfile libraries, the read function provides a near-identical usage. Further improvements have been integrated, and those libraries are anticipated to be deprecated at some point in the future.