Module pyaurorax.tools.classes.fov
Class representation for a FoV map.
Classes
class FOV (cartopy_projection: cartopy.crs.Projection,
fov_data: List[FOVData] | None = None,
contour_data: Dict[str, List[Any]] | None = None)-
Expand source code
@dataclass class FOV: """ Class representation for a FoV map. Attributes: cartopy_projection (cartopy.crs.Projection): Cartopy projection to utilize. fov_data (FOVData or list of FOVData objects): FoV contours included in FOV object. contour_data (Dict[str, List[Any]]): Other contour data included in FOV object. """ cartopy_projection: Projection fov_data: Optional[List[FOVData]] = None contour_data: Optional[Dict[str, List[Any]]] = None def __str__(self) -> str: return self.__repr__() def __repr__(self) -> str: if self.fov_data is not None: n_fovs = 0 for fov in self.fov_data: n_fovs += len(fov.fovs.keys()) if self.contour_data is not None: return "FOV(cartopy_projection=Projection(%s), %d FOVData Object(s), %d Contour(s))" % ( self.cartopy_projection.to_string(), n_fovs, len(self.contour_data.get("x", [])), ) else: return "FOV(cartopy_projection=Projection(%s), %d FOVData Object(s))" % ( self.cartopy_projection.to_string(), n_fovs, ) else: if self.contour_data is not None: return "FOV(cartopy_projection=Projection(%s), %d Contour(s))" % ( self.cartopy_projection.to_string(), len(self.contour_data.get("x", [])), ) else: return "FOV(cartopy_projection=Projection(%s))" % (self.cartopy_projection.to_string()) def pretty_print(self): """ A special print output for this class. """ # set special strings cartopy_projection_str = "Projection(%s)" % (self.cartopy_projection.to_string()) if self.contour_data is not None: contour_data_str = "%d Contour(s)" % (len(self.contour_data.get("x", [])), ) else: contour_data_str = "None" if self.fov_data is not None: n_fovs = 0 for fov in self.fov_data: n_fovs += len(fov.fovs.keys()) fov_data_str = "%d FoVData Object(s)" % (n_fovs) else: fov_data_str = "None" # print print("FOV:") print(" %-23s: %s" % ("cartopy_projection", cartopy_projection_str)) print(" %-23s: %s" % ("fov_data", fov_data_str)) print(" %-23s: %s" % ("contour_data", contour_data_str)) def plot(self, map_extent: Sequence[Union[float, int]], label: bool = True, enforce_data_availability: bool = False, figsize: Optional[Tuple[int, int]] = None, title: Optional[str] = None, ocean_color: Optional[str] = None, land_color: str = "gray", land_edgecolor: str = "#8A8A8A", borders_color: str = "#AEAEAE", borders_disable: bool = False, returnfig: bool = False, savefig: bool = False, savefig_filename: Optional[str] = None, savefig_quality: Optional[int] = None) -> Any: """ Generate a plot of the FoV data. Either display it (default behaviour), save it to disk (using the `savefig` parameter), or return the matplotlib plot object for further usage (using the `returnfig` parameter). Args: map_extent (List[int]): Latitude/longitude range to be visible on the rendered map. This is a list of 4 integers and/or floats, in the order of [min_lon, max_lon, min_lat, max_lat]. label (bool): Specifies wether individual FoVs will be labelled with their site_uid. enforce_data_availability (bool): Specifies whether or not data availability information associated with the FOV object should be used to omit sites with no available data. Note that data availability information is typically created using the FOVData.add_availability method. figsize (tuple): The matplotlib figure size to use when plotting. For example `figsize=(14,4)`. title (str): The title to display above the plotted Fov Map. Default is no title. ocean_color (str): Colour of the ocean. Default is cartopy's default shade of blue. Colours can be supplied as a word, or hexcode prefixed with a '#' character (ie. `#55AADD`). land_color (str): Colour of the land. Default is `gray`. Colours can be supplied as a word, or hexcode prefixed with a '#' character (ie. `#41BB87`). land_edgecolor (str): Color of the land edges. Default is `#8A8A8A`. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_color (str): Color of the country borders. Default is `AEAEAE`. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_disable (bool): Disbale rendering of the borders. Default is `False`. returnfig (bool): Instead of displaying the image, return the matplotlib figure object. This allows for further plot manipulation, for example, adding labels or a title in a different location than the default. Remember - if this parameter is supplied, be sure that you close your plot after finishing work with it. This can be achieved by doing `plt.close(fig)`. Note that this method cannot be used in combination with `savefig`. savefig (bool): Save the displayed image to disk instead of displaying it. The parameter savefig_filename is required if this parameter is set to True. Defaults to `False`. savefig_filename (str): Filename to save the image to. Must be specified if the savefig parameter is set to True. savefig_quality (int): Quality level of the saved image. This can be specified if the savefig_filename is a JPG image. If it is a PNG, quality is ignored. Default quality level for JPGs is matplotlib/Pillow's default of 75%. Returns: The displayed fov map, by default. If `savefig` is set to True, nothing will be returned. If `returnfig` is set to True, the plotting variables `(fig, ax)` will be returned. Raises: """ # check return mode if (returnfig is True and savefig is True): raise ValueError("Only one of returnfig or savefig can be set to True") if returnfig is True and (savefig_filename is not None or savefig_quality is not None): show_warning("The figure will be returned, but a savefig option parameter was supplied. Consider " + "removing the savefig option parameter(s) as they will be ignored.", stacklevel=1) elif (savefig is False and (savefig_filename is not None or savefig_quality is not None)): show_warning("A savefig option parameter was supplied, but the savefig parameter is False. The " + "savefig option parameters will be ignored.", stacklevel=1) # Initialize figure fig = plt.figure(figsize=figsize) ax = fig.add_axes((0, 0, 1, 1), projection=self.cartopy_projection) ax.set_extent(map_extent, crs=cartopy.crs.Geodetic()) # type: ignore # Add ocean # # NOTE: we use the default ocean color if (ocean_color is not None): ax.add_feature( # type: ignore cartopy.feature.OCEAN, facecolor=ocean_color, zorder=0) else: ax.add_feature(cartopy.feature.OCEAN, zorder=0) # type: ignore # add land ax.add_feature( # type: ignore cartopy.feature.LAND, facecolor=land_color, edgecolor=land_edgecolor, zorder=0) # add borders if (borders_disable is False): ax.add_feature( # type: ignore cartopy.feature.BORDERS, edgecolor=borders_color, zorder=0) # Go through and plot all of the FoVs within each of the Object's FOVData objects if self.fov_data is not None: # If requesting enforcement of data availability, check that data availability exists in # the object first if (enforce_data_availability is True): for fov_data in self.fov_data: if (fov_data.data_availability is None): raise ValueError("Before plotting FOV object with enforce_data_availability=True, FOVData.add_availability(...) " + "must be called for all included FOVData objects.") for fov_data in self.fov_data: latlon_dict = fov_data.fovs for site in fov_data.site_uid_list: # If data_availability has been enforced and is False for this site, don't plot it if (enforce_data_availability is True) and (fov_data.data_availability is not None) and (site in fov_data.data_availability.keys()): if (fov_data.data_availability[site] is False): continue latlon = latlon_dict[site] ax.plot(np.squeeze(latlon[1, :]), np.squeeze(latlon[0, :]), color=fov_data.color, linestyle=fov_data.linestyle, zorder=1, linewidth=fov_data.linewidth, transform=cartopy.crs.Geodetic()) # Add site_uid labels to the FoV plot, in the center of each ASI FoV if label: if (fov_data.instrument_array != "trex_spectrograph"): center_lat = (latlon[0, 0] + latlon[0, 179]) / 2.0 center_lon = (latlon[1, 89] + latlon[1, 269]) / 2.0 else: center_lat = (latlon[0, 0] + latlon[0, -1]) / 2.0 center_lon = (latlon[1, 0] + latlon[1, -1]) / 2.0 ax.text(center_lon, center_lat, site, ha="center", va="center", color=fov_data.color, transform=cartopy.crs.Geodetic(), clip_on=True) # Go through and plot all of the contour data included in the Object if self.contour_data is not None: for i in range(len(self.contour_data["x"])): ax.plot(self.contour_data["x"][i], self.contour_data["y"][i], color=self.contour_data["color"][i], linewidth=self.contour_data["linewidth"][i], linestyle=self.contour_data["linestyle"][i], marker=self.contour_data["marker"][i], zorder=self.contour_data["zorder"][i]) # set title if (title is not None): ax.set_title(title) # save figure or show it if (savefig is True): # check that filename has been set if (savefig_filename is None): raise ValueError("The savefig_filename parameter is missing, but required since savefig was set to True.") # save the figure f_extension = os.path.splitext(savefig_filename)[-1].lower() if (".jpg" == f_extension or ".jpeg" == f_extension): # check quality setting if (savefig_quality is not None): plt.savefig(savefig_filename, pil_kwargs={"quality": savefig_quality}, bbox_inches="tight") else: plt.savefig(savefig_filename, bbox_inches="tight") else: if (savefig_quality is not None): # quality specified, but output filename is not a JPG, so show a warning show_warning("The savefig_quality parameter was specified, but is only used for saving JPG files. The " + "savefig_filename parameter was determined to not be a JPG file, so the quality will be ignored", stacklevel=1) plt.savefig(savefig_filename, bbox_inches="tight") # clean up by closing the figure plt.close(fig) elif (returnfig is True): # return the figure and axis objects return (fig, ax) else: # show the figure plt.show(fig) # cleanup by closing the figure plt.close(fig) # return return None def add_fov(self, fov_data: Union[FOVData, List[FOVData]]): """ Add one or more FOVData objects to the FOV object. Args: fov_data (pyaurorax.tools.FOVData or list): A single or list of FOVData objects, that will be added to the FOV object map upon initialization. Returns: The object's fov_data parameter is updated appropriately. Raises: ValueError: issues encountered with supplied parameters. """ if isinstance(fov_data, list): fovs_to_add = fov_data else: fovs_to_add = [fov_data] if self.fov_data is None: self.fov_data = fovs_to_add else: for data in fovs_to_add: self.fov_data.append(data) def add_geo_contours(self, lats: Optional[Union[ndarray, list]] = None, lons: Optional[Union[ndarray, list]] = None, constant_lats: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, constant_lons: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, color: str = "black", linewidth: Union[float, int] = 1, linestyle: str = "solid", marker: str = "", bring_to_front: bool = False): """ Add geographic contours to a FoV map. Args: lats (ndarray or list): Sequence of geographic latitudes defining a contour. lons (ndarray or list): Sequence of geographic longitudes defining a contour. constant_lats (float, int, or Sequence): Geographic Latitude(s) at which to add line(s) of constant latitude. constant_lons (float, int, or Sequence): Geographic Longitude(s) at which to add line(s) of constant longitude. color (str): The matplotlib color used for the contour(s). linewidth (float or int): The contour thickness. linestyle (str): The matplotlib linestyle used for the contour(s). marker (str): The matplotlib marker used for the contour(s). bring_to_front (bool): Plots the contour on top of all other currently plotted objects. Returns: The object's contour_data parameter is populated appropriately. Raises: ValueError: issues encountered with supplied parameters. """ # Make sure some form of lat/lon is provided if (constant_lats is None) and (constant_lons is None) and (lats is None) and (lons is None): raise ValueError("No latitudes or longitudes provided.") # If manually passing in lats & lons, make sure both are provided if (lats is not None or lons is not None) and (lats is None or lons is None): raise (ValueError("Manually supplying contour requires both lats and lons.")) # Check that color exists in matplotlib if color not in matplotlib.colors.CSS4_COLORS: raise ValueError(f"Color '{color}' not recognized by matplotlib.") # Check that linestyle is valid if linestyle not in ["-", "--", "-.", ":", "solid", "dashed", "dashdot", "dotted"]: raise ValueError(f"Linestyle '{linestyle}' not recognized by matplotlib.") # Check that linewidth is valid if linewidth <= 0: raise ValueError("Linewidth must be greater than zero.") # Check that marker is valid if marker not in ["", "o", ".", "p", "*", "x", "+", "X"]: raise ValueError(f"Marker '{marker}' is not currently supported.") # Convert numerics to lists if necessary if constant_lats is not None: if isinstance(constant_lats, (float, int)): constant_lats = [constant_lats] if constant_lons is not None: if isinstance(constant_lons, (float, int)): constant_lons = [constant_lons] # Initialize contour data dict if it doesn't exist yet if self.contour_data is None: self.contour_data = {"x": [], "y": [], "color": [], "linewidth": [], "linestyle": [], "marker": [], "zorder": []} # Obtain the Fov map's projection source_proj = pyproj.CRS.from_user_input(cartopy.crs.Geodetic()) mosaic_proj = pyproj.CRS.from_user_input(self.cartopy_projection) transformer = pyproj.Transformer.from_crs(source_proj, mosaic_proj, always_xy=True) # First handling manually supplied lat/lon arrays if (lats is not None) and (lons is not None): # Convert lists to ndarrays if necessary if isinstance(lats, list): lats = np.array(lats) if isinstance(lons, list): lons = np.array(lons) if len(lats) != len(lons): raise ValueError("Lat/Lon data must be of the same size.") # Create specified contour from geographic coords x, y = transformer.transform(lons, lats) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(x) self.contour_data["y"].append(y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Next handling lines of constant latitude if constant_lats is not None: # Generate longitudinal domain of the lat line (full globe) lon_domain = np.arange(-180, 180 + 0.2, 0.2) # Iterate through all lines of constant lat requested for lat in constant_lats: # Create line of constant lat const_lat_x, const_lat_y = (lon_domain, lon_domain * 0 + lat) sort_idx = np.argsort(const_lat_x) const_lat_y = const_lat_y[sort_idx] const_lat_x = const_lat_x[sort_idx] const_lat_x, const_lat_y = transformer.transform(const_lat_x, const_lat_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lat_x) self.contour_data["y"].append(const_lat_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Now handling lines of constant longitude if constant_lons is not None: # Generate latitudinal domain of the lon line (full globe) lat_domain = np.arange(-90, 90 + 0.1, 0.1) # Iterate through all lines of constant lon requested for lon in constant_lons: # Create line of constant lon and add to dict const_lon_x, const_lon_y = (lat_domain * 0 + lon, lat_domain) sort_idx = np.argsort(const_lon_y) const_lon_x = const_lon_x[sort_idx] const_lon_y = const_lon_y[sort_idx] const_lon_x, const_lon_y = transformer.transform(const_lon_x, const_lon_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lon_x) self.contour_data["y"].append(const_lon_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) def add_mag_contours(self, timestamp: datetime.datetime, constant_lats: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, constant_lons: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, lats: Optional[Union[ndarray, list]] = None, lons: Optional[Union[ndarray, list]] = None, color: str = "black", linewidth: Union[float, int] = 1, linestyle: str = "solid", marker: str = "", bring_to_front: bool = False): """ Add geomagnetic contours to a FoV map. Args: timestamp (datetime.datetime): The timestamp used in computing AACGM coordinates. lats (ndarray or list): Sequence of geomagnetic latitudes defining a contour. lons (ndarray or list): Sequence of geomagnetic longitudes defining a contour. constant_lats (float, int, Sequence): Geomagnetic latitude(s) at which to add contour(s) of constant latitude. constant_lons (float, int, Sequence): Geomagnetic longitude(s) at which to add contours(s) of constant longitude. color (str): The matplotlib color used for the contour(s). linewidth (float or int): The contour thickness. linestyle (str): The matplotlib linestyle used for the contour(s). marker (str): The matplotlib marker used for the contour(s). bring_to_front (bool): Plots the contour on top of all other currently plotted objects. Returns: The object's contour_data parameter is populated appropriately. Raises: ValueError: issues encountered with supplied parameters """ # Make sure some form of lat/lon is provided if (constant_lats is None) and (constant_lons is None) and (lats is None) and (lons is None): raise ValueError("No latitudes or longitudes provided.") # If manually passing in lats & lons, make sure both are provided if (lats is not None or lons is not None) and (lats is None or lons is None): raise ValueError("Manually supplying contour requires both lats and lons.") # Check that color exists in matplotlib if color not in matplotlib.colors.CSS4_COLORS: raise ValueError(f"Color '{color}' not recognized by matplotlib.") # Check that linestyle is valid if linestyle not in ["-", "--", "-.", ":", "solid", "dashed", "dashdot", "dotted"]: raise ValueError(f"Linestyle '{linestyle}' not recognized by matplotlib.") # Check that linewidth is valid if linewidth <= 0: raise ValueError("Linewidth must be greater than zero.") # Check that marker is valid if marker not in ["", "o", ".", "p", "*", "x", "+", "X"]: raise ValueError(f"Marker '{marker}' is not currently supported.") # Convert numerics to lists if necessary if constant_lats is not None: if isinstance(constant_lats, (float, int)): constant_lats = [constant_lats] if constant_lons is not None: if isinstance(constant_lons, (float, int)): constant_lons = [constant_lons] # Initialize contour data dict if it doesn't exist yet if self.contour_data is None: self.contour_data = {"x": [], "y": [], "color": [], "linewidth": [], "linestyle": [], "marker": [], "zorder": []} # Obtain the FoV map's projection source_proj = pyproj.CRS.from_user_input(cartopy.crs.Geodetic()) mosaic_proj = pyproj.CRS.from_user_input(self.cartopy_projection) transformer = pyproj.Transformer.from_crs(source_proj, mosaic_proj, always_xy=True) # First handling manually supplied lat/lon arrays if (lats is not None) and (lons is not None): # Convert lists to ndarrays if necessary if isinstance(lats, list): lats = np.array(lats) if isinstance(lons, list): lons = np.array(lons) if len(lats) != len(lons): raise ValueError("Lat/Lon data must be of the same size.") # Create specified contour from magnetic coords y, x, _ = aacgmv2.convert_latlon_arr(lats, lons, lats * 0.0, timestamp, method_code="A2G") x, y = transformer.transform(x, y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(x) self.contour_data["y"].append(y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Next handling lines of constant latitude if constant_lats is not None: # Generate longitudinal domain of the lat line (full globe) lon_domain = np.arange(-180, 180 + 0.2, 0.2) # iterate through all lines of constant lat requested for lat in constant_lats: # Create line of constant lat from magnetic coords const_lat_x, const_lat_y = (lon_domain, lon_domain * 0 + lat) const_lat_y, const_lat_x, _ = aacgmv2.convert_latlon_arr(const_lat_y, const_lat_x, const_lat_x * 0.0, timestamp, method_code="A2G") sort_idx = np.argsort(const_lat_x) const_lat_y = const_lat_y[sort_idx] const_lat_x = const_lat_x[sort_idx] const_lat_x, const_lat_y = transformer.transform(const_lat_x, const_lat_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lat_x) self.contour_data["y"].append(const_lat_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Now handling lines of constant longitude if constant_lons is not None: # Generate latitudinal domain of the lon line (full globe) lat_domain = np.arange(-90, 90 + 0.1, 0.1) # iterate through all lines of constant lon requested for lon in constant_lons: # Create line of constant lon from magnetic coords const_lon_x, const_lon_y = (lat_domain * 0 + lon, lat_domain) const_lon_y, const_lon_x, _ = aacgmv2.convert_latlon_arr(const_lon_y, const_lon_x, const_lon_x * 0.0, timestamp, method_code="A2G") sort_idx = np.argsort(const_lon_y) const_lon_x = const_lon_x[sort_idx] const_lon_y = const_lon_y[sort_idx] const_lon_x, const_lon_y = transformer.transform(const_lon_x, const_lon_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lon_x) self.contour_data["y"].append(const_lon_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front))
Class representation for a FoV map.
Attributes
Instance variables
var cartopy_projection : cartopy.crs.Projection
var contour_data : Dict[str, List[Any]] | None
var fov_data : List[FOVData] | None
Methods
def add_fov(self,
fov_data: FOVData | List[FOVData])-
Expand source code
def add_fov(self, fov_data: Union[FOVData, List[FOVData]]): """ Add one or more FOVData objects to the FOV object. Args: fov_data (pyaurorax.tools.FOVData or list): A single or list of FOVData objects, that will be added to the FOV object map upon initialization. Returns: The object's fov_data parameter is updated appropriately. Raises: ValueError: issues encountered with supplied parameters. """ if isinstance(fov_data, list): fovs_to_add = fov_data else: fovs_to_add = [fov_data] if self.fov_data is None: self.fov_data = fovs_to_add else: for data in fovs_to_add: self.fov_data.append(data)
Add one or more FOVData objects to the FOV object.
Args
fov_data
:FOVData
orlist
- A single or list of FOVData objects, that will be added to the FOV object map upon initialization.
Returns
The object's fov_data parameter is updated appropriately.
Raises
ValueError
- issues encountered with supplied parameters.
def add_geo_contours(self,
lats: numpy.ndarray | list | None = None,
lons: numpy.ndarray | list | None = None,
constant_lats: float | int | Sequence[float | int] | numpy.ndarray | None = None,
constant_lons: float | int | Sequence[float | int] | numpy.ndarray | None = None,
color: str = 'black',
linewidth: float | int = 1,
linestyle: str = 'solid',
marker: str = '',
bring_to_front: bool = False)-
Expand source code
def add_geo_contours(self, lats: Optional[Union[ndarray, list]] = None, lons: Optional[Union[ndarray, list]] = None, constant_lats: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, constant_lons: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, color: str = "black", linewidth: Union[float, int] = 1, linestyle: str = "solid", marker: str = "", bring_to_front: bool = False): """ Add geographic contours to a FoV map. Args: lats (ndarray or list): Sequence of geographic latitudes defining a contour. lons (ndarray or list): Sequence of geographic longitudes defining a contour. constant_lats (float, int, or Sequence): Geographic Latitude(s) at which to add line(s) of constant latitude. constant_lons (float, int, or Sequence): Geographic Longitude(s) at which to add line(s) of constant longitude. color (str): The matplotlib color used for the contour(s). linewidth (float or int): The contour thickness. linestyle (str): The matplotlib linestyle used for the contour(s). marker (str): The matplotlib marker used for the contour(s). bring_to_front (bool): Plots the contour on top of all other currently plotted objects. Returns: The object's contour_data parameter is populated appropriately. Raises: ValueError: issues encountered with supplied parameters. """ # Make sure some form of lat/lon is provided if (constant_lats is None) and (constant_lons is None) and (lats is None) and (lons is None): raise ValueError("No latitudes or longitudes provided.") # If manually passing in lats & lons, make sure both are provided if (lats is not None or lons is not None) and (lats is None or lons is None): raise (ValueError("Manually supplying contour requires both lats and lons.")) # Check that color exists in matplotlib if color not in matplotlib.colors.CSS4_COLORS: raise ValueError(f"Color '{color}' not recognized by matplotlib.") # Check that linestyle is valid if linestyle not in ["-", "--", "-.", ":", "solid", "dashed", "dashdot", "dotted"]: raise ValueError(f"Linestyle '{linestyle}' not recognized by matplotlib.") # Check that linewidth is valid if linewidth <= 0: raise ValueError("Linewidth must be greater than zero.") # Check that marker is valid if marker not in ["", "o", ".", "p", "*", "x", "+", "X"]: raise ValueError(f"Marker '{marker}' is not currently supported.") # Convert numerics to lists if necessary if constant_lats is not None: if isinstance(constant_lats, (float, int)): constant_lats = [constant_lats] if constant_lons is not None: if isinstance(constant_lons, (float, int)): constant_lons = [constant_lons] # Initialize contour data dict if it doesn't exist yet if self.contour_data is None: self.contour_data = {"x": [], "y": [], "color": [], "linewidth": [], "linestyle": [], "marker": [], "zorder": []} # Obtain the Fov map's projection source_proj = pyproj.CRS.from_user_input(cartopy.crs.Geodetic()) mosaic_proj = pyproj.CRS.from_user_input(self.cartopy_projection) transformer = pyproj.Transformer.from_crs(source_proj, mosaic_proj, always_xy=True) # First handling manually supplied lat/lon arrays if (lats is not None) and (lons is not None): # Convert lists to ndarrays if necessary if isinstance(lats, list): lats = np.array(lats) if isinstance(lons, list): lons = np.array(lons) if len(lats) != len(lons): raise ValueError("Lat/Lon data must be of the same size.") # Create specified contour from geographic coords x, y = transformer.transform(lons, lats) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(x) self.contour_data["y"].append(y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Next handling lines of constant latitude if constant_lats is not None: # Generate longitudinal domain of the lat line (full globe) lon_domain = np.arange(-180, 180 + 0.2, 0.2) # Iterate through all lines of constant lat requested for lat in constant_lats: # Create line of constant lat const_lat_x, const_lat_y = (lon_domain, lon_domain * 0 + lat) sort_idx = np.argsort(const_lat_x) const_lat_y = const_lat_y[sort_idx] const_lat_x = const_lat_x[sort_idx] const_lat_x, const_lat_y = transformer.transform(const_lat_x, const_lat_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lat_x) self.contour_data["y"].append(const_lat_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Now handling lines of constant longitude if constant_lons is not None: # Generate latitudinal domain of the lon line (full globe) lat_domain = np.arange(-90, 90 + 0.1, 0.1) # Iterate through all lines of constant lon requested for lon in constant_lons: # Create line of constant lon and add to dict const_lon_x, const_lon_y = (lat_domain * 0 + lon, lat_domain) sort_idx = np.argsort(const_lon_y) const_lon_x = const_lon_x[sort_idx] const_lon_y = const_lon_y[sort_idx] const_lon_x, const_lon_y = transformer.transform(const_lon_x, const_lon_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lon_x) self.contour_data["y"].append(const_lon_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front))
Add geographic contours to a FoV map.
Args
lats
:ndarray
orlist
- Sequence of geographic latitudes defining a contour.
lons
:ndarray
orlist
- Sequence of geographic longitudes defining a contour.
constant_lats
:float, int,
orSequence
- Geographic Latitude(s) at which to add line(s) of constant latitude.
constant_lons
:float, int,
orSequence
- Geographic Longitude(s) at which to add line(s) of constant longitude.
color
:str
- The matplotlib color used for the contour(s).
linewidth
:float
orint
- The contour thickness.
linestyle
:str
- The matplotlib linestyle used for the contour(s).
marker
:str
- The matplotlib marker used for the contour(s).
bring_to_front
:bool
- Plots the contour on top of all other currently plotted objects.
Returns
The object's contour_data parameter is populated appropriately.
Raises
ValueError
- issues encountered with supplied parameters.
def add_mag_contours(self,
timestamp: datetime.datetime,
constant_lats: float | int | Sequence[float | int] | numpy.ndarray | None = None,
constant_lons: float | int | Sequence[float | int] | numpy.ndarray | None = None,
lats: numpy.ndarray | list | None = None,
lons: numpy.ndarray | list | None = None,
color: str = 'black',
linewidth: float | int = 1,
linestyle: str = 'solid',
marker: str = '',
bring_to_front: bool = False)-
Expand source code
def add_mag_contours(self, timestamp: datetime.datetime, constant_lats: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, constant_lons: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, lats: Optional[Union[ndarray, list]] = None, lons: Optional[Union[ndarray, list]] = None, color: str = "black", linewidth: Union[float, int] = 1, linestyle: str = "solid", marker: str = "", bring_to_front: bool = False): """ Add geomagnetic contours to a FoV map. Args: timestamp (datetime.datetime): The timestamp used in computing AACGM coordinates. lats (ndarray or list): Sequence of geomagnetic latitudes defining a contour. lons (ndarray or list): Sequence of geomagnetic longitudes defining a contour. constant_lats (float, int, Sequence): Geomagnetic latitude(s) at which to add contour(s) of constant latitude. constant_lons (float, int, Sequence): Geomagnetic longitude(s) at which to add contours(s) of constant longitude. color (str): The matplotlib color used for the contour(s). linewidth (float or int): The contour thickness. linestyle (str): The matplotlib linestyle used for the contour(s). marker (str): The matplotlib marker used for the contour(s). bring_to_front (bool): Plots the contour on top of all other currently plotted objects. Returns: The object's contour_data parameter is populated appropriately. Raises: ValueError: issues encountered with supplied parameters """ # Make sure some form of lat/lon is provided if (constant_lats is None) and (constant_lons is None) and (lats is None) and (lons is None): raise ValueError("No latitudes or longitudes provided.") # If manually passing in lats & lons, make sure both are provided if (lats is not None or lons is not None) and (lats is None or lons is None): raise ValueError("Manually supplying contour requires both lats and lons.") # Check that color exists in matplotlib if color not in matplotlib.colors.CSS4_COLORS: raise ValueError(f"Color '{color}' not recognized by matplotlib.") # Check that linestyle is valid if linestyle not in ["-", "--", "-.", ":", "solid", "dashed", "dashdot", "dotted"]: raise ValueError(f"Linestyle '{linestyle}' not recognized by matplotlib.") # Check that linewidth is valid if linewidth <= 0: raise ValueError("Linewidth must be greater than zero.") # Check that marker is valid if marker not in ["", "o", ".", "p", "*", "x", "+", "X"]: raise ValueError(f"Marker '{marker}' is not currently supported.") # Convert numerics to lists if necessary if constant_lats is not None: if isinstance(constant_lats, (float, int)): constant_lats = [constant_lats] if constant_lons is not None: if isinstance(constant_lons, (float, int)): constant_lons = [constant_lons] # Initialize contour data dict if it doesn't exist yet if self.contour_data is None: self.contour_data = {"x": [], "y": [], "color": [], "linewidth": [], "linestyle": [], "marker": [], "zorder": []} # Obtain the FoV map's projection source_proj = pyproj.CRS.from_user_input(cartopy.crs.Geodetic()) mosaic_proj = pyproj.CRS.from_user_input(self.cartopy_projection) transformer = pyproj.Transformer.from_crs(source_proj, mosaic_proj, always_xy=True) # First handling manually supplied lat/lon arrays if (lats is not None) and (lons is not None): # Convert lists to ndarrays if necessary if isinstance(lats, list): lats = np.array(lats) if isinstance(lons, list): lons = np.array(lons) if len(lats) != len(lons): raise ValueError("Lat/Lon data must be of the same size.") # Create specified contour from magnetic coords y, x, _ = aacgmv2.convert_latlon_arr(lats, lons, lats * 0.0, timestamp, method_code="A2G") x, y = transformer.transform(x, y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(x) self.contour_data["y"].append(y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Next handling lines of constant latitude if constant_lats is not None: # Generate longitudinal domain of the lat line (full globe) lon_domain = np.arange(-180, 180 + 0.2, 0.2) # iterate through all lines of constant lat requested for lat in constant_lats: # Create line of constant lat from magnetic coords const_lat_x, const_lat_y = (lon_domain, lon_domain * 0 + lat) const_lat_y, const_lat_x, _ = aacgmv2.convert_latlon_arr(const_lat_y, const_lat_x, const_lat_x * 0.0, timestamp, method_code="A2G") sort_idx = np.argsort(const_lat_x) const_lat_y = const_lat_y[sort_idx] const_lat_x = const_lat_x[sort_idx] const_lat_x, const_lat_y = transformer.transform(const_lat_x, const_lat_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lat_x) self.contour_data["y"].append(const_lat_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Now handling lines of constant longitude if constant_lons is not None: # Generate latitudinal domain of the lon line (full globe) lat_domain = np.arange(-90, 90 + 0.1, 0.1) # iterate through all lines of constant lon requested for lon in constant_lons: # Create line of constant lon from magnetic coords const_lon_x, const_lon_y = (lat_domain * 0 + lon, lat_domain) const_lon_y, const_lon_x, _ = aacgmv2.convert_latlon_arr(const_lon_y, const_lon_x, const_lon_x * 0.0, timestamp, method_code="A2G") sort_idx = np.argsort(const_lon_y) const_lon_x = const_lon_x[sort_idx] const_lon_y = const_lon_y[sort_idx] const_lon_x, const_lon_y = transformer.transform(const_lon_x, const_lon_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lon_x) self.contour_data["y"].append(const_lon_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front))
Add geomagnetic contours to a FoV map.
Args
timestamp
:datetime.datetime
- The timestamp used in computing AACGM coordinates.
lats
:ndarray
orlist
- Sequence of geomagnetic latitudes defining a contour.
lons
:ndarray
orlist
- Sequence of geomagnetic longitudes defining a contour.
constant_lats
:float, int, Sequence
- Geomagnetic latitude(s) at which to add contour(s) of constant latitude.
constant_lons
:float, int, Sequence
- Geomagnetic longitude(s) at which to add contours(s) of constant longitude.
color
:str
- The matplotlib color used for the contour(s).
linewidth
:float
orint
- The contour thickness.
linestyle
:str
- The matplotlib linestyle used for the contour(s).
marker
:str
- The matplotlib marker used for the contour(s).
bring_to_front
:bool
- Plots the contour on top of all other currently plotted objects.
Returns
The object's contour_data parameter is populated appropriately.
Raises
ValueError
- issues encountered with supplied parameters
def plot(self,
map_extent: Sequence[float | int],
label: bool = True,
enforce_data_availability: bool = False,
figsize: Tuple[int, int] | None = None,
title: str | None = None,
ocean_color: str | None = None,
land_color: str = 'gray',
land_edgecolor: str = '#8A8A8A',
borders_color: str = '#AEAEAE',
borders_disable: bool = False,
returnfig: bool = False,
savefig: bool = False,
savefig_filename: str | None = None,
savefig_quality: int | None = None) ‑> Any-
Expand source code
def plot(self, map_extent: Sequence[Union[float, int]], label: bool = True, enforce_data_availability: bool = False, figsize: Optional[Tuple[int, int]] = None, title: Optional[str] = None, ocean_color: Optional[str] = None, land_color: str = "gray", land_edgecolor: str = "#8A8A8A", borders_color: str = "#AEAEAE", borders_disable: bool = False, returnfig: bool = False, savefig: bool = False, savefig_filename: Optional[str] = None, savefig_quality: Optional[int] = None) -> Any: """ Generate a plot of the FoV data. Either display it (default behaviour), save it to disk (using the `savefig` parameter), or return the matplotlib plot object for further usage (using the `returnfig` parameter). Args: map_extent (List[int]): Latitude/longitude range to be visible on the rendered map. This is a list of 4 integers and/or floats, in the order of [min_lon, max_lon, min_lat, max_lat]. label (bool): Specifies wether individual FoVs will be labelled with their site_uid. enforce_data_availability (bool): Specifies whether or not data availability information associated with the FOV object should be used to omit sites with no available data. Note that data availability information is typically created using the FOVData.add_availability method. figsize (tuple): The matplotlib figure size to use when plotting. For example `figsize=(14,4)`. title (str): The title to display above the plotted Fov Map. Default is no title. ocean_color (str): Colour of the ocean. Default is cartopy's default shade of blue. Colours can be supplied as a word, or hexcode prefixed with a '#' character (ie. `#55AADD`). land_color (str): Colour of the land. Default is `gray`. Colours can be supplied as a word, or hexcode prefixed with a '#' character (ie. `#41BB87`). land_edgecolor (str): Color of the land edges. Default is `#8A8A8A`. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_color (str): Color of the country borders. Default is `AEAEAE`. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_disable (bool): Disbale rendering of the borders. Default is `False`. returnfig (bool): Instead of displaying the image, return the matplotlib figure object. This allows for further plot manipulation, for example, adding labels or a title in a different location than the default. Remember - if this parameter is supplied, be sure that you close your plot after finishing work with it. This can be achieved by doing `plt.close(fig)`. Note that this method cannot be used in combination with `savefig`. savefig (bool): Save the displayed image to disk instead of displaying it. The parameter savefig_filename is required if this parameter is set to True. Defaults to `False`. savefig_filename (str): Filename to save the image to. Must be specified if the savefig parameter is set to True. savefig_quality (int): Quality level of the saved image. This can be specified if the savefig_filename is a JPG image. If it is a PNG, quality is ignored. Default quality level for JPGs is matplotlib/Pillow's default of 75%. Returns: The displayed fov map, by default. If `savefig` is set to True, nothing will be returned. If `returnfig` is set to True, the plotting variables `(fig, ax)` will be returned. Raises: """ # check return mode if (returnfig is True and savefig is True): raise ValueError("Only one of returnfig or savefig can be set to True") if returnfig is True and (savefig_filename is not None or savefig_quality is not None): show_warning("The figure will be returned, but a savefig option parameter was supplied. Consider " + "removing the savefig option parameter(s) as they will be ignored.", stacklevel=1) elif (savefig is False and (savefig_filename is not None or savefig_quality is not None)): show_warning("A savefig option parameter was supplied, but the savefig parameter is False. The " + "savefig option parameters will be ignored.", stacklevel=1) # Initialize figure fig = plt.figure(figsize=figsize) ax = fig.add_axes((0, 0, 1, 1), projection=self.cartopy_projection) ax.set_extent(map_extent, crs=cartopy.crs.Geodetic()) # type: ignore # Add ocean # # NOTE: we use the default ocean color if (ocean_color is not None): ax.add_feature( # type: ignore cartopy.feature.OCEAN, facecolor=ocean_color, zorder=0) else: ax.add_feature(cartopy.feature.OCEAN, zorder=0) # type: ignore # add land ax.add_feature( # type: ignore cartopy.feature.LAND, facecolor=land_color, edgecolor=land_edgecolor, zorder=0) # add borders if (borders_disable is False): ax.add_feature( # type: ignore cartopy.feature.BORDERS, edgecolor=borders_color, zorder=0) # Go through and plot all of the FoVs within each of the Object's FOVData objects if self.fov_data is not None: # If requesting enforcement of data availability, check that data availability exists in # the object first if (enforce_data_availability is True): for fov_data in self.fov_data: if (fov_data.data_availability is None): raise ValueError("Before plotting FOV object with enforce_data_availability=True, FOVData.add_availability(...) " + "must be called for all included FOVData objects.") for fov_data in self.fov_data: latlon_dict = fov_data.fovs for site in fov_data.site_uid_list: # If data_availability has been enforced and is False for this site, don't plot it if (enforce_data_availability is True) and (fov_data.data_availability is not None) and (site in fov_data.data_availability.keys()): if (fov_data.data_availability[site] is False): continue latlon = latlon_dict[site] ax.plot(np.squeeze(latlon[1, :]), np.squeeze(latlon[0, :]), color=fov_data.color, linestyle=fov_data.linestyle, zorder=1, linewidth=fov_data.linewidth, transform=cartopy.crs.Geodetic()) # Add site_uid labels to the FoV plot, in the center of each ASI FoV if label: if (fov_data.instrument_array != "trex_spectrograph"): center_lat = (latlon[0, 0] + latlon[0, 179]) / 2.0 center_lon = (latlon[1, 89] + latlon[1, 269]) / 2.0 else: center_lat = (latlon[0, 0] + latlon[0, -1]) / 2.0 center_lon = (latlon[1, 0] + latlon[1, -1]) / 2.0 ax.text(center_lon, center_lat, site, ha="center", va="center", color=fov_data.color, transform=cartopy.crs.Geodetic(), clip_on=True) # Go through and plot all of the contour data included in the Object if self.contour_data is not None: for i in range(len(self.contour_data["x"])): ax.plot(self.contour_data["x"][i], self.contour_data["y"][i], color=self.contour_data["color"][i], linewidth=self.contour_data["linewidth"][i], linestyle=self.contour_data["linestyle"][i], marker=self.contour_data["marker"][i], zorder=self.contour_data["zorder"][i]) # set title if (title is not None): ax.set_title(title) # save figure or show it if (savefig is True): # check that filename has been set if (savefig_filename is None): raise ValueError("The savefig_filename parameter is missing, but required since savefig was set to True.") # save the figure f_extension = os.path.splitext(savefig_filename)[-1].lower() if (".jpg" == f_extension or ".jpeg" == f_extension): # check quality setting if (savefig_quality is not None): plt.savefig(savefig_filename, pil_kwargs={"quality": savefig_quality}, bbox_inches="tight") else: plt.savefig(savefig_filename, bbox_inches="tight") else: if (savefig_quality is not None): # quality specified, but output filename is not a JPG, so show a warning show_warning("The savefig_quality parameter was specified, but is only used for saving JPG files. The " + "savefig_filename parameter was determined to not be a JPG file, so the quality will be ignored", stacklevel=1) plt.savefig(savefig_filename, bbox_inches="tight") # clean up by closing the figure plt.close(fig) elif (returnfig is True): # return the figure and axis objects return (fig, ax) else: # show the figure plt.show(fig) # cleanup by closing the figure plt.close(fig) # return return None
Generate a plot of the FoV data.
Either display it (default behaviour), save it to disk (using the
savefig
parameter), or return the matplotlib plot object for further usage (using thereturnfig
parameter).Args
map_extent
:List[int]
- Latitude/longitude range to be visible on the rendered map. This is a list of 4 integers and/or floats, in the order of [min_lon, max_lon, min_lat, max_lat].
label
:bool
- Specifies wether individual FoVs will be labelled with their site_uid.
enforce_data_availability
:bool
- Specifies whether or not data availability information associated with the FOV object should be used to omit sites with no available data. Note that data availability information is typically created using the FOVData.add_availability method.
figsize
:tuple
- The matplotlib figure size to use when plotting. For example
figsize=(14,4)
. title
:str
- The title to display above the plotted Fov Map. Default is no title.
ocean_color
:str
- Colour of the ocean. Default is cartopy's default shade of blue. Colours can be supplied
as a word, or hexcode prefixed with a '#' character (ie.
#55AADD
). land_color
:str
- Colour of the land. Default is
gray
. Colours can be supplied as a word, or hexcode prefixed with a '#' character (ie.#41BB87
). land_edgecolor
:str
- Color of the land edges. Default is
#8A8A8A
. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_color
:str
- Color of the country borders. Default is
AEAEAE
. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_disable
:bool
- Disbale rendering of the borders. Default is
False
. returnfig
:bool
-
Instead of displaying the image, return the matplotlib figure object. This allows for further plot manipulation, for example, adding labels or a title in a different location than the default.
Remember - if this parameter is supplied, be sure that you close your plot after finishing work with it. This can be achieved by doing
plt.close(fig)
.Note that this method cannot be used in combination with
savefig
. savefig
:bool
- Save the displayed image to disk instead of displaying it. The parameter savefig_filename is required if
this parameter is set to True. Defaults to
False
. savefig_filename
:str
- Filename to save the image to. Must be specified if the savefig parameter is set to True.
savefig_quality
:int
- Quality level of the saved image. This can be specified if the savefig_filename is a JPG image. If it is a PNG, quality is ignored. Default quality level for JPGs is matplotlib/Pillow's default of 75%.
Returns
The displayed fov map, by default. If
savefig
is set to True, nothing will be returned. Ifreturnfig
is set to True, the plotting variables(fig, ax)
will be returned. Raises: def pretty_print(self)
-
Expand source code
def pretty_print(self): """ A special print output for this class. """ # set special strings cartopy_projection_str = "Projection(%s)" % (self.cartopy_projection.to_string()) if self.contour_data is not None: contour_data_str = "%d Contour(s)" % (len(self.contour_data.get("x", [])), ) else: contour_data_str = "None" if self.fov_data is not None: n_fovs = 0 for fov in self.fov_data: n_fovs += len(fov.fovs.keys()) fov_data_str = "%d FoVData Object(s)" % (n_fovs) else: fov_data_str = "None" # print print("FOV:") print(" %-23s: %s" % ("cartopy_projection", cartopy_projection_str)) print(" %-23s: %s" % ("fov_data", fov_data_str)) print(" %-23s: %s" % ("contour_data", contour_data_str))
A special print output for this class.
class FOVData (site_uid_list: List[str],
fovs: Dict[str, numpy.ndarray],
fovs_dimensions: Dict[str, Tuple],
instrument_array: str,
data_availability: Dict[str, bool] | None,
color: str,
linewidth: int,
linestyle: str,
aurorax_obj)-
Expand source code
class FOVData: """ Prepared ASI FoV data for use by FOV routines or manual plotting. Attributes: site_uid_list (List[str]): List of site unique identifiers contained within this object. fovs (Dict[str, numpy.ndarray]): Dictionary that holds the lat/lon data in a 2xN numpy array giving the FoV, for each site UID. fovs_dimensions (Dict[str, numpy.ndarray]): Dictionary that holds the shape of each set of lat/lon data. instrument_array (str): String giving the name of the instrument array this FOVData object corresponds to (optional). data_availability (dict): An optional dictionary containing information about which sites included in the FOVData actually have available data for a given time range. Usually created using the FOVData.add_Availability() method. color (str): String specifying the color to use when plotting this FOVData. linewidth (str): Integer specifying the linewidth to use when plotting this FOVData. linestyle (str): String (matplotlib.pyplot format code) specifying the linestyle to use when plotting this FOVData. """ def __init__(self, site_uid_list: List[str], fovs: Dict[str, ndarray], fovs_dimensions: Dict[str, Tuple], instrument_array: str, data_availability: Optional[Dict[str, bool]], color: str, linewidth: int, linestyle: str, aurorax_obj): # Public vars self.site_uid_list = site_uid_list self.fovs = fovs self.fovs_dimensions = fovs_dimensions self.instrument_array = instrument_array self.data_availability = data_availability self.color = color self.linewidth = linewidth self.linestyle = linestyle # Private vars self.__aurorax_obj = aurorax_obj def __str__(self) -> str: return self.__repr__() def __repr__(self) -> str: # set special strings unique_dimensions_str = str(list(dict.fromkeys(self.fovs_dimensions.values()))).replace("[", "").replace("]", "").replace("), (", "),(") fovs_str = "Dict[%d site(s) of array(dims=%s)]" % (len(self.fovs.keys()), unique_dimensions_str) # return return "FOVData(fovs=%s, site_uid_list=%s, instrument_array=%s)" % (fovs_str, self.site_uid_list.__repr__(), self.instrument_array) def pretty_print(self): """ A special print output for this class. """ # set special strings unique_dimensions_str = str(list(dict.fromkeys(self.fovs_dimensions.values()))).replace("[", "").replace("]", "").replace("), (", "),(") fovs_str = "Dict[%d site(s) of array(dims=%s)]" % (len(self.fovs.keys()), unique_dimensions_str) # print print("FovData:") print(" %-19s: %s" % ("instrument_array", self.instrument_array)) print(" %-19s: %s" % ("site_uid_list", self.site_uid_list)) print(" %-19s: %s" % ("fovs", fovs_str)) def add_availability(self, dataset_name: str, start: datetime.datetime, end: datetime.datetime): """ Add data availability information to an FOVData object. Given a start and end time, information will be added to the object regarding whether or not each site included in the FOVData object took data in that time range. This is useful for plotting FOVs for only those sites that took data in a given time interval. Args: dataset_name (str): The name of the dataset to check for data availability (e.g. "REGO_RAW") start (datetime.datetime): Defines the start time of the interval to check for data availability. end (datetime.datetime): Defines the end time of the interval to check for data availability. Returns: The FOVData object is updated to hold data availability information, that can be used when plotting to omit sites that did not take data during the time interval defined by start and end. Raises: """ if (self.instrument_array is None): raise ValueError("Cannot add data availability to an FOVData object with no associated instrument_array. Please specify " + "instrument_array upon creation of FOVData object to enforce data availability.") # Check if the requested dataset makes sense for the FOVData fov_instrument = self.instrument_array.upper() if (fov_instrument == "TREX_SPECTROGRAPH"): fov_instrument = "TREX_SPECT" if (fov_instrument not in dataset_name): raise ValueError("Requested dataset_name does not match the instrument_array contained in this FOVData object.") # Create a dictionary corresponding to the FoV data, that will hold # booleans specifying whether or not there is data for each site availability_dict = {} for site in self.fovs.keys(): # Request list of all files of requested dataset at requested site result = self.__aurorax_obj.data.ucalgary.get_urls(dataset_name, start, end, site_uid=site) # If there are any files within the desired time-range then update availability dict with True, otherwise update False if (result.count > 0): availability_dict[site] = True else: availability_dict[site] = False self.data_availability = availability_dict
Prepared ASI FoV data for use by FOV routines or manual plotting.
Attributes
site_uid_list
:List[str]
- List of site unique identifiers contained within this object.
fovs
:Dict[str, numpy.ndarray]
- Dictionary that holds the lat/lon data in a 2xN numpy array giving the FoV, for each site UID.
fovs_dimensions
:Dict[str, numpy.ndarray]
- Dictionary that holds the shape of each set of lat/lon data.
instrument_array
:str
- String giving the name of the instrument array this FOVData object corresponds to (optional).
data_availability
:dict
- An optional dictionary containing information about which sites included in the FOVData actually have available data for a given time range. Usually created using the FOVData.add_Availability() method.
color
:str
- String specifying the color to use when plotting this FOVData.
linewidth
:str
- Integer specifying the linewidth to use when plotting this FOVData.
linestyle
:str
- String (matplotlib.pyplot format code) specifying the linestyle to use when plotting this FOVData.
Methods
def add_availability(self, dataset_name: str, start: datetime.datetime, end: datetime.datetime)
-
Expand source code
def add_availability(self, dataset_name: str, start: datetime.datetime, end: datetime.datetime): """ Add data availability information to an FOVData object. Given a start and end time, information will be added to the object regarding whether or not each site included in the FOVData object took data in that time range. This is useful for plotting FOVs for only those sites that took data in a given time interval. Args: dataset_name (str): The name of the dataset to check for data availability (e.g. "REGO_RAW") start (datetime.datetime): Defines the start time of the interval to check for data availability. end (datetime.datetime): Defines the end time of the interval to check for data availability. Returns: The FOVData object is updated to hold data availability information, that can be used when plotting to omit sites that did not take data during the time interval defined by start and end. Raises: """ if (self.instrument_array is None): raise ValueError("Cannot add data availability to an FOVData object with no associated instrument_array. Please specify " + "instrument_array upon creation of FOVData object to enforce data availability.") # Check if the requested dataset makes sense for the FOVData fov_instrument = self.instrument_array.upper() if (fov_instrument == "TREX_SPECTROGRAPH"): fov_instrument = "TREX_SPECT" if (fov_instrument not in dataset_name): raise ValueError("Requested dataset_name does not match the instrument_array contained in this FOVData object.") # Create a dictionary corresponding to the FoV data, that will hold # booleans specifying whether or not there is data for each site availability_dict = {} for site in self.fovs.keys(): # Request list of all files of requested dataset at requested site result = self.__aurorax_obj.data.ucalgary.get_urls(dataset_name, start, end, site_uid=site) # If there are any files within the desired time-range then update availability dict with True, otherwise update False if (result.count > 0): availability_dict[site] = True else: availability_dict[site] = False self.data_availability = availability_dict
Add data availability information to an FOVData object. Given a start and end time, information will be added to the object regarding whether or not each site included in the FOVData object took data in that time range. This is useful for plotting FOVs for only those sites that took data in a given time interval.
Args
dataset_name
:str
- The name of the dataset to check for data availability (e.g. "REGO_RAW")
start
:datetime.datetime
- Defines the start time of the interval to check for data availability.
end
:datetime.datetime
- Defines the end time of the interval to check for data availability.
Returns
The FOVData object is updated to hold data availability information, that can be used when plotting to omit sites that did not take data during the time interval defined by start and end. Raises:
def pretty_print(self)
-
Expand source code
def pretty_print(self): """ A special print output for this class. """ # set special strings unique_dimensions_str = str(list(dict.fromkeys(self.fovs_dimensions.values()))).replace("[", "").replace("]", "").replace("), (", "),(") fovs_str = "Dict[%d site(s) of array(dims=%s)]" % (len(self.fovs.keys()), unique_dimensions_str) # print print("FovData:") print(" %-19s: %s" % ("instrument_array", self.instrument_array)) print(" %-19s: %s" % ("site_uid_list", self.site_uid_list)) print(" %-19s: %s" % ("fovs", fovs_str))
A special print output for this class.