Module pyaurorax.tools.classes.mosaic
Class representation for a mosaic.
Classes
class Mosaic (polygon_data: matplotlib.collections.PolyCollection | List[matplotlib.collections.PolyCollection],
cartopy_projection: cartopy.crs.Projection,
contour_data: Dict[str, List[Any]] | None = None,
spect_cmap: str | None = None,
spect_intensity_scale: Tuple[int, int] | None = None)-
Expand source code
@dataclass class Mosaic: """ Class representation for a generated mosaic. Attributes: polygon_data (matplotlib.collections.PolyCollection): Generated polygons containing rendered data. cartopy_projection (cartopy.crs.Projection): Cartopy projection to utilize. contour_data (Dict[str, List[Any]]): Generated contour data. spect_cmap (str): String giving the cmap to use for spect legend. spect_intensity_scale (Tuple[int]): The min and max values that spectrograph data is scaled to in the mosaic, if any is present. """ polygon_data: Union[PolyCollection, List[PolyCollection]] cartopy_projection: Projection contour_data: Optional[Dict[str, List[Any]]] = None spect_cmap: Optional[str] = None spect_intensity_scale: Optional[Tuple[int, int]] = None def __str__(self) -> str: return self.__repr__() def __repr__(self) -> str: if isinstance(self.polygon_data, list): polycollection_str = "[PolyCollection(...), ...]" else: polycollection_str = "PolyCollection(...)" if self.contour_data is not None: return "Mosaic(polygon_data=PolyCollection(...), cartopy_projection=Projection(%s), %s Contours)" % ( self.cartopy_projection.to_string(), len(self.contour_data.get("x", [])), ) else: return "Mosaic(polygon_data=" + polycollection_str + ", cartopy_projection=Projection(%s))" % (self.cartopy_projection.to_string()) def plot(self, map_extent: Sequence[Union[float, int]], figsize: Optional[Tuple[int, int]] = None, rayleighs: bool = False, max_rayleighs: int = 20000, title: Optional[str] = None, colorbar_title: Optional[str] = None, ocean_color: Optional[str] = None, land_color: str = "gray", land_edgecolor: str = "#8A8A8A", borders_color: str = "#AEAEAE", borders_disable: bool = False, cbar_colormap: str = "", returnfig: bool = False, savefig: bool = False, savefig_filename: Optional[str] = None, savefig_quality: Optional[int] = None) -> Any: """ Generate a plot of the mosaic data. Either display it (default behaviour), save it to disk (using the `savefig` parameter), or return the matplotlib plot object for further usage (using the `returnfig` parameter). Args: map_extent (List[int]): Latitude/longitude range to be visible on the rendered map. This is a list of 4 integers and/or floats, in the order of [min_lon, max_lon, min_lat, max_lat]. figsize (tuple): The matplotlib figure size to use when plotting. For example `figsize=(14,4)`. rayleighs (bool): Set to `True` if the data being plotted is in Rayleighs. Defaults to `False`. max_rayleighs (int): Max intensity scale for Rayleighs. Defaults to `20000`. ocean_color (str): Colour of the ocean. Default is cartopy's default shade of blue. Colours can be supplied as a word, or hexcode prefixed with a '#' character (ie. `#55AADD`). land_color (str): Colour of the land. Default is `gray`. Colours can be supplied as a word, or hexcode prefixed with a '#' character (ie. `#41BB87`). land_edgecolor (str): Color of the land edges. Default is `#8A8A8A`. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_color (str): Color of the country borders. Default is `AEAEAE`. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_disable (bool): Disbale rendering of the borders. Default is `False`. cbar_colorcmap (str): The matplotlib colormap to use for the plotted color bar. Default is `gray`, unless mosaic was created with spectrograph data, in which case defaults to the colormap used for spectrograph data.. Commonly used colormaps are: - REGO: `gist_heat` - THEMIS ASI: `gray` - TREx Blue: `Blues_r` - TREx NIR: `gray` - TREx RGB: `None` A list of all available colormaps can be found on the [matplotlib documentation](https://matplotlib.org/stable/gallery/color/colormap_reference.html). returnfig (bool): Instead of displaying the image, return the matplotlib figure object. This allows for further plot manipulation, for example, adding labels or a title in a different location than the default. Remember - if this parameter is supplied, be sure that you close your plot after finishing work with it. This can be achieved by doing `plt.close(fig)`. Note that this method cannot be used in combination with `savefig`. savefig (bool): Save the displayed image to disk instead of displaying it. The parameter savefig_filename is required if this parameter is set to True. Defaults to `False`. savefig_filename (str): Filename to save the image to. Must be specified if the savefig parameter is set to True. savefig_quality (int): Quality level of the saved image. This can be specified if the savefig_filename is a JPG image. If it is a PNG, quality is ignored. Default quality level for JPGs is matplotlib/Pillow's default of 75%. Returns: The displayed montage, by default. If `savefig` is set to True, nothing will be returned. If `returnfig` is set to True, the plotting variables `(fig, ax)` will be returned. Raises: """ # check return mode if (returnfig is True and savefig is True): raise ValueError("Only one of returnfig or savefig can be set to True") if returnfig is True and (savefig_filename is not None or savefig_quality is not None): warnings.warn("The figure will be returned, but a savefig option parameter was supplied. Consider " + "removing the savefig option parameter(s) as they will be ignored.", stacklevel=1) elif (savefig is False and (savefig_filename is not None or savefig_quality is not None)): warnings.warn("A savefig option parameter was supplied, but the savefig parameter is False. The " + "savefig option parameters will be ignored.", stacklevel=1) # Get colormap if there is spectrograph data if self.spect_cmap is not None: cbar_colormap = self.spect_cmap # initialize figure fig = plt.figure(figsize=figsize) ax = fig.add_axes((0, 0, 1, 1), projection=self.cartopy_projection) ax.set_extent(map_extent, crs=cartopy.crs.Geodetic()) # type: ignore # add ocean # # NOTE: we use the default ocean color if (ocean_color is not None): ax.add_feature( # type: ignore cartopy.feature.OCEAN, facecolor=ocean_color, zorder=0) else: ax.add_feature(cartopy.feature.OCEAN, zorder=0) # type: ignore # add land ax.add_feature( # type: ignore cartopy.feature.LAND, facecolor=land_color, edgecolor=land_edgecolor, zorder=0) # add borders if (borders_disable is False): ax.add_feature( # type: ignore cartopy.feature.BORDERS, edgecolor=borders_color, zorder=0) # add polygon data # # NOTE: it seems that when running this function a second time, the polygon # data is not too happy. So to handle this, we plot a copy of the polygon data if isinstance(self.polygon_data, list): for polygon_data in self.polygon_data: ax.add_collection(copy(polygon_data)) else: ax.add_collection(copy(self.polygon_data)) if self.contour_data is not None: for i in range(len(self.contour_data["x"])): ax.plot(self.contour_data["x"][i], self.contour_data["y"][i], color=self.contour_data["color"][i], linewidth=self.contour_data["linewidth"][i], linestyle=self.contour_data["linestyle"][i], marker=self.contour_data["marker"][i], zorder=self.contour_data["zorder"][i]) # set title if (title is not None): ax.set_title(title) # add text if (rayleighs is True): if isinstance(self.polygon_data, list): raise ValueError("Rayleighs Keyword is currently not available for mosaics with multiple sets of data.") # Create a colorbar, in Rayleighs, that accounts for the scaling limit we applied cbar_ticks = [float(j) / 5. for j in range(0, 6)] cbar_ticknames = [str(int(max_rayleighs / 5) * j) for j in range(0, 6)] # Any pixels with the max Rayleigh value could be greater than it, so we include the plus sign cbar_ticknames[-1] += "+" self.polygon_data.set_cmap(cbar_colormap) cbar = plt.colorbar(self.polygon_data, shrink=0.5, ticks=cbar_ticks, ax=ax) cbar.ax.set_yticklabels(cbar_ticknames) plt.text(1.025, 0.5, "Intensity (Rayleighs)", fontsize=14, transform=ax.transAxes, va="center", rotation="vertical", weight="bold", style="oblique") if (self.spect_cmap) is not None: if (self.spect_intensity_scale) is None: intensity_max = np.nan intensity_min = np.nan else: intensity_max = self.spect_intensity_scale[1] intensity_min = self.spect_intensity_scale[0] # Create a colorbar, in Rayleighs, that accounts for the scaling limit we applied cbar_ticks = [float(j) / 5. for j in range(0, 6)] cbar_ticknames = [str(int((intensity_max / 5) + intensity_min) * j) for j in range(0, 6)] # Any specrograph bins with the max intensity value could be greater than it, so we include the plus sign cbar_ticknames[-1] += "+" if isinstance(self.polygon_data, list): self.polygon_data[0].set_cmap(cbar_colormap) else: self.polygon_data.set_cmap(cbar_colormap) if isinstance(self.polygon_data, list): cbar = plt.colorbar(self.polygon_data[0], shrink=0.5, ticks=cbar_ticks, ax=ax) else: cbar = plt.colorbar(self.polygon_data, shrink=0.5, ticks=cbar_ticks, ax=ax) cbar.ax.set_yticklabels(cbar_ticknames) if colorbar_title is None: plt.text(1.025, 0.5, "Spectrograph Intensity (Rayleighs)", fontsize=10, transform=ax.transAxes, va="center", rotation="vertical", weight="bold", style="oblique") else: plt.text(1.025, 0.5, colorbar_title, fontsize=10, transform=ax.transAxes, va="center", rotation="vertical", weight="bold", style="oblique") # save figure or show it if (savefig is True): # check that filename has been set if (savefig_filename is None): raise ValueError("The savefig_filename parameter is missing, but required since savefig was set to True.") # save the figure f_extension = os.path.splitext(savefig_filename)[-1].lower() if (".jpg" == f_extension or ".jpeg" == f_extension): # check quality setting if (savefig_quality is not None): plt.savefig(savefig_filename, quality=savefig_quality, bbox_inches="tight") else: plt.savefig(savefig_filename, bbox_inches="tight") else: if (savefig_quality is not None): # quality specified, but output filename is not a JPG, so show a warning warnings.warn("The savefig_quality parameter was specified, but is only used for saving JPG files. The " + "savefig_filename parameter was determined to not be a JPG file, so the quality will be ignored", stacklevel=1) plt.savefig(savefig_filename, bbox_inches="tight") # clean up by closing the figure plt.close(fig) elif (returnfig is True): # return the figure and axis objects return (fig, ax) else: # show the figure plt.show(fig) # cleanup by closing the figure plt.close(fig) # return return None def add_geo_contours(self, lats: Optional[Union[ndarray, list]] = None, lons: Optional[Union[ndarray, list]] = None, constant_lats: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, constant_lons: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, color: str = "black", linewidth: Union[float, int] = 1, linestyle: str = "solid", marker: str = "", bring_to_front: bool = False): """ Add geographic contours to a mosaic. Args: lats (ndarray or list): Sequence of geographic latitudes defining a contour. lons (ndarray or list): Sequence of geographic longitudes defining a contour. constant_lats (float, int, or Sequence): Geographic Latitude(s) at which to add line(s) of constant latitude. constant_lons (float, int, or Sequence): Geographic Longitude(s) at which to add line(s) of constant longitude. color (str): The matplotlib color used for the contour(s). linewidth (float or int): The contour thickness. linestyle (str): The matplotlib linestyle used for the contour(s). marker (str): The matplotlib marker used for the contour(s). Returns: The object's contour_data parameter is populated appropriately. Raises: ValueError: issues encountered with supplied parameters. """ # Make sure some form of lat/lon is provided if (constant_lats is None) and (constant_lons is None) and (lats is None) and (lons is None): raise ValueError("No latitudes or longitudes provided.") # If manually passing in lats & lons, make sure both are provided if (lats is not None or lons is not None) and (lats is None or lons is None): raise (ValueError("Manually supplying contour requires both lats and lons.")) # Check that color exists in matplotlib if color not in matplotlib.colors.CSS4_COLORS: raise ValueError(f"Color '{color}' not recognized by matplotlib.") # Check that linestyle is valid if linestyle not in ["-", "--", "-.", ":", "solid", "dashed", "dashdot", "dotted"]: raise ValueError(f"Linestyle '{linestyle}' not recognized by matplotlib.") # Check that linewidth is valid if linewidth <= 0: raise ValueError("Linewidth must be greater than zero.") # Check that marker is valid if marker not in ["", "o", ".", "p", "*", "x", "+", "X"]: raise ValueError(f"Marker '{marker}' is not currently supported.") # Convert numerics to lists if necessary if constant_lats is not None: if isinstance(constant_lats, (float, int)): constant_lats = [constant_lats] if constant_lons is not None: if isinstance(constant_lons, (float, int)): constant_lons = [constant_lons] # Initialize contour data dict if it doesn't exist yet if self.contour_data is None: self.contour_data = {"x": [], "y": [], "color": [], "linewidth": [], "linestyle": [], "marker": [], "zorder": []} # Obtain the mosaic's projection source_proj = pyproj.CRS.from_user_input(cartopy.crs.Geodetic()) mosaic_proj = pyproj.CRS.from_user_input(self.cartopy_projection) transformer = pyproj.Transformer.from_crs(source_proj, mosaic_proj, always_xy=True) # First handling manually supplied lat/lon arrays if (lats is not None) and (lons is not None): # Convert lists to ndarrays if necessary if isinstance(lats, list): lats = np.array(lats) if isinstance(lons, list): lons = np.array(lons) if len(lats) != len(lons): raise ValueError("Lat/Lon data must be of the same size.") # Create specified contour from geographic coords x, y = transformer.transform(lons, lats) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(x) self.contour_data["y"].append(y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Next handling lines of constant latitude if constant_lats is not None: # Generate longitudinal domain of the lat line (full globe) lon_domain = np.arange(-180, 180 + 0.2, 0.2) # Iterate through all lines of constant lat requested for lat in constant_lats: # Create line of constant lat const_lat_x, const_lat_y = (lon_domain, lon_domain * 0 + lat) sort_idx = np.argsort(const_lat_x) const_lat_y = const_lat_y[sort_idx] const_lat_x = const_lat_x[sort_idx] const_lat_x, const_lat_y = transformer.transform(const_lat_x, const_lat_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lat_x) self.contour_data["y"].append(const_lat_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Now handling lines of constant longitude if constant_lons is not None: # Generate latitudinal domain of the lon line (full globe) lat_domain = np.arange(-90, 90 + 0.1, 0.1) # Iterate through all lines of constant lon requested for lon in constant_lons: # Create line of constant lon and add to dict const_lon_x, const_lon_y = (lat_domain * 0 + lon, lat_domain) sort_idx = np.argsort(const_lon_y) const_lon_x = const_lon_x[sort_idx] const_lon_y = const_lon_y[sort_idx] const_lon_x, const_lon_y = transformer.transform(const_lon_x, const_lon_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lon_x) self.contour_data["y"].append(const_lon_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) def add_mag_contours(self, timestamp: datetime.datetime, constant_lats: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, constant_lons: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, lats: Optional[Union[ndarray, list]] = None, lons: Optional[Union[ndarray, list]] = None, color: str = "black", linewidth: Union[float, int] = 1, linestyle: str = "solid", marker: str = "", bring_to_front: bool = False): """ Add geomagnetic contours to a mosaic. Args: timestamp (datetime.datetime): The timestamp used in computing AACGM coordinates. lats (ndarray or list): Sequence of geomagnetic latitudes defining a contour. lons (ndarray or list): Sequence of geomagnetic longitudes defining a contour. constant_lats (float, int, Sequence): Geomagnetic latitude(s) at which to add contour(s) of constant latitude. constant_lons (float, int, Sequence): Geomagnetic longitude(s) at which to add contours(s) of constant longitude. color (str): The matplotlib color used for the contour(s). linewidth (float or int): The contour thickness. linestyle (str): The matplotlib linestyle used for the contour(s). marker (str): The matplotlib marker used for the contour(s). Returns: The object's contour_data parameter is populated appropriately. Raises: ValueError: issues encountered with supplied parameters. """ # Make sure some form of lat/lon is provided if (constant_lats is None) and (constant_lons is None) and (lats is None) and (lons is None): raise ValueError("No latitudes or longitudes provided.") # If manually passing in lats & lons, make sure both are provided if (lats is not None or lons is not None) and (lats is None or lons is None): raise (ValueError("Manually supplying contour requires both lats and lons.")) # Check that color exists in matplotlib if color not in matplotlib.colors.CSS4_COLORS: raise ValueError(f"Color '{color}' not recognized by matplotlib.") # Check that linestyle is valid if linestyle not in ["-", "--", "-.", ":", "solid", "dashed", "dashdot", "dotted"]: raise ValueError(f"Linestyle '{linestyle}' not recognized by matplotlib.") # Check that linewidth is valid if linewidth <= 0: raise ValueError("linewidth must be greater than zero.") # Convert numerics to lists if necessary if constant_lats is not None: if isinstance(constant_lats, (float, int)): constant_lats = [constant_lats] if constant_lons is not None: if isinstance(constant_lons, (float, int)): constant_lons = [constant_lons] # Initialize contour data dict if it doesn't exist yet if self.contour_data is None: self.contour_data = {"x": [], "y": [], "color": [], "linewidth": [], "linestyle": [], "marker": [], "zorder": []} # Obtain the mosaic's projection source_proj = pyproj.CRS.from_user_input(cartopy.crs.Geodetic()) mosaic_proj = pyproj.CRS.from_user_input(self.cartopy_projection) transformer = pyproj.Transformer.from_crs(source_proj, mosaic_proj, always_xy=True) # First handling manually supplied lat/lon arrays if (lats is not None) and (lons is not None): # Convert lists to ndarrays if necessary if isinstance(lats, list): lats = np.array(lats) if isinstance(lons, list): lons = np.array(lons) if len(lats) != len(lons): raise ValueError("Lat/Lon data must be of the same size.") # Create specified contour from magnetic coords y, x, alt = aacgmv2.convert_latlon_arr(lats, lons, lats * 0.0, timestamp, method_code="A2G") x, y = transformer.transform(x, y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(x) self.contour_data["y"].append(y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Next handling lines of constant latitude if constant_lats is not None: # Generate longitudinal domain of the lat line (full globe) lon_domain = np.arange(-180, 180 + 0.2, 0.2) # iterate through all lines of constant lat requested for lat in constant_lats: # Create line of constant lat from magnetic coords const_lat_x, const_lat_y = (lon_domain, lon_domain * 0 + lat) const_lat_y, const_lat_x, alt = aacgmv2.convert_latlon_arr(const_lat_y, const_lat_x, const_lat_x * 0.0, timestamp, method_code="A2G") sort_idx = np.argsort(const_lat_x) const_lat_y = const_lat_y[sort_idx] const_lat_x = const_lat_x[sort_idx] const_lat_x, const_lat_y = transformer.transform(const_lat_x, const_lat_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lat_x) self.contour_data["y"].append(const_lat_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Now handling lines of constant longitude if constant_lons is not None: # Generate latitudinal domain of the lon line (full globe) lat_domain = np.arange(-90, 90 + 0.1, 0.1) # iterate through all lines of constant lon requested for lon in constant_lons: # Create line of constant lon from magnetic coords const_lon_x, const_lon_y = (lat_domain * 0 + lon, lat_domain) const_lon_y, const_lon_x, alt = aacgmv2.convert_latlon_arr(const_lon_y, const_lon_x, const_lon_x * 0.0, timestamp, method_code="A2G") sort_idx = np.argsort(const_lon_y) const_lon_x = const_lon_x[sort_idx] const_lon_y = const_lon_y[sort_idx] const_lon_x, const_lon_y = transformer.transform(const_lon_x, const_lon_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lon_x) self.contour_data["y"].append(const_lon_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front))
Class representation for a generated mosaic.
Attributes
polygon_data
:matplotlib.collections.PolyCollection
- Generated polygons containing rendered data.
cartopy_projection
:cartopy.crs.Projection
- Cartopy projection to utilize.
contour_data
:Dict[str, List[Any]]
- Generated contour data.
spect_cmap
:str
- String giving the cmap to use for spect legend.
spect_intensity_scale
:Tuple[int]
- The min and max values that spectrograph data is scaled to in the mosaic, if any is present.
Class variables
var cartopy_projection : cartopy.crs.Projection
var contour_data : Dict[str, List[Any]] | None
var polygon_data : matplotlib.collections.PolyCollection | List[matplotlib.collections.PolyCollection]
var spect_cmap : str | None
var spect_intensity_scale : Tuple[int, int] | None
Methods
def add_geo_contours(self,
lats: numpy.ndarray | list | None = None,
lons: numpy.ndarray | list | None = None,
constant_lats: float | int | Sequence[float | int] | numpy.ndarray | None = None,
constant_lons: float | int | Sequence[float | int] | numpy.ndarray | None = None,
color: str = 'black',
linewidth: float | int = 1,
linestyle: str = 'solid',
marker: str = '',
bring_to_front: bool = False)-
Expand source code
def add_geo_contours(self, lats: Optional[Union[ndarray, list]] = None, lons: Optional[Union[ndarray, list]] = None, constant_lats: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, constant_lons: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, color: str = "black", linewidth: Union[float, int] = 1, linestyle: str = "solid", marker: str = "", bring_to_front: bool = False): """ Add geographic contours to a mosaic. Args: lats (ndarray or list): Sequence of geographic latitudes defining a contour. lons (ndarray or list): Sequence of geographic longitudes defining a contour. constant_lats (float, int, or Sequence): Geographic Latitude(s) at which to add line(s) of constant latitude. constant_lons (float, int, or Sequence): Geographic Longitude(s) at which to add line(s) of constant longitude. color (str): The matplotlib color used for the contour(s). linewidth (float or int): The contour thickness. linestyle (str): The matplotlib linestyle used for the contour(s). marker (str): The matplotlib marker used for the contour(s). Returns: The object's contour_data parameter is populated appropriately. Raises: ValueError: issues encountered with supplied parameters. """ # Make sure some form of lat/lon is provided if (constant_lats is None) and (constant_lons is None) and (lats is None) and (lons is None): raise ValueError("No latitudes or longitudes provided.") # If manually passing in lats & lons, make sure both are provided if (lats is not None or lons is not None) and (lats is None or lons is None): raise (ValueError("Manually supplying contour requires both lats and lons.")) # Check that color exists in matplotlib if color not in matplotlib.colors.CSS4_COLORS: raise ValueError(f"Color '{color}' not recognized by matplotlib.") # Check that linestyle is valid if linestyle not in ["-", "--", "-.", ":", "solid", "dashed", "dashdot", "dotted"]: raise ValueError(f"Linestyle '{linestyle}' not recognized by matplotlib.") # Check that linewidth is valid if linewidth <= 0: raise ValueError("Linewidth must be greater than zero.") # Check that marker is valid if marker not in ["", "o", ".", "p", "*", "x", "+", "X"]: raise ValueError(f"Marker '{marker}' is not currently supported.") # Convert numerics to lists if necessary if constant_lats is not None: if isinstance(constant_lats, (float, int)): constant_lats = [constant_lats] if constant_lons is not None: if isinstance(constant_lons, (float, int)): constant_lons = [constant_lons] # Initialize contour data dict if it doesn't exist yet if self.contour_data is None: self.contour_data = {"x": [], "y": [], "color": [], "linewidth": [], "linestyle": [], "marker": [], "zorder": []} # Obtain the mosaic's projection source_proj = pyproj.CRS.from_user_input(cartopy.crs.Geodetic()) mosaic_proj = pyproj.CRS.from_user_input(self.cartopy_projection) transformer = pyproj.Transformer.from_crs(source_proj, mosaic_proj, always_xy=True) # First handling manually supplied lat/lon arrays if (lats is not None) and (lons is not None): # Convert lists to ndarrays if necessary if isinstance(lats, list): lats = np.array(lats) if isinstance(lons, list): lons = np.array(lons) if len(lats) != len(lons): raise ValueError("Lat/Lon data must be of the same size.") # Create specified contour from geographic coords x, y = transformer.transform(lons, lats) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(x) self.contour_data["y"].append(y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Next handling lines of constant latitude if constant_lats is not None: # Generate longitudinal domain of the lat line (full globe) lon_domain = np.arange(-180, 180 + 0.2, 0.2) # Iterate through all lines of constant lat requested for lat in constant_lats: # Create line of constant lat const_lat_x, const_lat_y = (lon_domain, lon_domain * 0 + lat) sort_idx = np.argsort(const_lat_x) const_lat_y = const_lat_y[sort_idx] const_lat_x = const_lat_x[sort_idx] const_lat_x, const_lat_y = transformer.transform(const_lat_x, const_lat_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lat_x) self.contour_data["y"].append(const_lat_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Now handling lines of constant longitude if constant_lons is not None: # Generate latitudinal domain of the lon line (full globe) lat_domain = np.arange(-90, 90 + 0.1, 0.1) # Iterate through all lines of constant lon requested for lon in constant_lons: # Create line of constant lon and add to dict const_lon_x, const_lon_y = (lat_domain * 0 + lon, lat_domain) sort_idx = np.argsort(const_lon_y) const_lon_x = const_lon_x[sort_idx] const_lon_y = const_lon_y[sort_idx] const_lon_x, const_lon_y = transformer.transform(const_lon_x, const_lon_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lon_x) self.contour_data["y"].append(const_lon_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front))
Add geographic contours to a mosaic.
Args
lats (ndarray or list): Sequence of geographic latitudes defining a contour.
lons (ndarray or list): Sequence of geographic longitudes defining a contour.
constant_lats (float, int, or Sequence): Geographic Latitude(s) at which to add line(s) of constant latitude.
constant_lons (float, int, or Sequence): Geographic Longitude(s) at which to add line(s) of constant longitude.
color (str): The matplotlib color used for the contour(s).
linewidth (float or int): The contour thickness.
linestyle (str): The matplotlib linestyle used for the contour(s).
marker (str): The matplotlib marker used for the contour(s).
Returns
The object's contour_data parameter is populated appropriately.
Raises
ValueError
- issues encountered with supplied parameters.
def add_mag_contours(self,
timestamp: datetime.datetime,
constant_lats: float | int | Sequence[float | int] | numpy.ndarray | None = None,
constant_lons: float | int | Sequence[float | int] | numpy.ndarray | None = None,
lats: numpy.ndarray | list | None = None,
lons: numpy.ndarray | list | None = None,
color: str = 'black',
linewidth: float | int = 1,
linestyle: str = 'solid',
marker: str = '',
bring_to_front: bool = False)-
Expand source code
def add_mag_contours(self, timestamp: datetime.datetime, constant_lats: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, constant_lons: Optional[Union[float, int, Sequence[Union[float, int]], ndarray]] = None, lats: Optional[Union[ndarray, list]] = None, lons: Optional[Union[ndarray, list]] = None, color: str = "black", linewidth: Union[float, int] = 1, linestyle: str = "solid", marker: str = "", bring_to_front: bool = False): """ Add geomagnetic contours to a mosaic. Args: timestamp (datetime.datetime): The timestamp used in computing AACGM coordinates. lats (ndarray or list): Sequence of geomagnetic latitudes defining a contour. lons (ndarray or list): Sequence of geomagnetic longitudes defining a contour. constant_lats (float, int, Sequence): Geomagnetic latitude(s) at which to add contour(s) of constant latitude. constant_lons (float, int, Sequence): Geomagnetic longitude(s) at which to add contours(s) of constant longitude. color (str): The matplotlib color used for the contour(s). linewidth (float or int): The contour thickness. linestyle (str): The matplotlib linestyle used for the contour(s). marker (str): The matplotlib marker used for the contour(s). Returns: The object's contour_data parameter is populated appropriately. Raises: ValueError: issues encountered with supplied parameters. """ # Make sure some form of lat/lon is provided if (constant_lats is None) and (constant_lons is None) and (lats is None) and (lons is None): raise ValueError("No latitudes or longitudes provided.") # If manually passing in lats & lons, make sure both are provided if (lats is not None or lons is not None) and (lats is None or lons is None): raise (ValueError("Manually supplying contour requires both lats and lons.")) # Check that color exists in matplotlib if color not in matplotlib.colors.CSS4_COLORS: raise ValueError(f"Color '{color}' not recognized by matplotlib.") # Check that linestyle is valid if linestyle not in ["-", "--", "-.", ":", "solid", "dashed", "dashdot", "dotted"]: raise ValueError(f"Linestyle '{linestyle}' not recognized by matplotlib.") # Check that linewidth is valid if linewidth <= 0: raise ValueError("linewidth must be greater than zero.") # Convert numerics to lists if necessary if constant_lats is not None: if isinstance(constant_lats, (float, int)): constant_lats = [constant_lats] if constant_lons is not None: if isinstance(constant_lons, (float, int)): constant_lons = [constant_lons] # Initialize contour data dict if it doesn't exist yet if self.contour_data is None: self.contour_data = {"x": [], "y": [], "color": [], "linewidth": [], "linestyle": [], "marker": [], "zorder": []} # Obtain the mosaic's projection source_proj = pyproj.CRS.from_user_input(cartopy.crs.Geodetic()) mosaic_proj = pyproj.CRS.from_user_input(self.cartopy_projection) transformer = pyproj.Transformer.from_crs(source_proj, mosaic_proj, always_xy=True) # First handling manually supplied lat/lon arrays if (lats is not None) and (lons is not None): # Convert lists to ndarrays if necessary if isinstance(lats, list): lats = np.array(lats) if isinstance(lons, list): lons = np.array(lons) if len(lats) != len(lons): raise ValueError("Lat/Lon data must be of the same size.") # Create specified contour from magnetic coords y, x, alt = aacgmv2.convert_latlon_arr(lats, lons, lats * 0.0, timestamp, method_code="A2G") x, y = transformer.transform(x, y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(x) self.contour_data["y"].append(y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Next handling lines of constant latitude if constant_lats is not None: # Generate longitudinal domain of the lat line (full globe) lon_domain = np.arange(-180, 180 + 0.2, 0.2) # iterate through all lines of constant lat requested for lat in constant_lats: # Create line of constant lat from magnetic coords const_lat_x, const_lat_y = (lon_domain, lon_domain * 0 + lat) const_lat_y, const_lat_x, alt = aacgmv2.convert_latlon_arr(const_lat_y, const_lat_x, const_lat_x * 0.0, timestamp, method_code="A2G") sort_idx = np.argsort(const_lat_x) const_lat_y = const_lat_y[sort_idx] const_lat_x = const_lat_x[sort_idx] const_lat_x, const_lat_y = transformer.transform(const_lat_x, const_lat_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lat_x) self.contour_data["y"].append(const_lat_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front)) # Now handling lines of constant longitude if constant_lons is not None: # Generate latitudinal domain of the lon line (full globe) lat_domain = np.arange(-90, 90 + 0.1, 0.1) # iterate through all lines of constant lon requested for lon in constant_lons: # Create line of constant lon from magnetic coords const_lon_x, const_lon_y = (lat_domain * 0 + lon, lat_domain) const_lon_y, const_lon_x, alt = aacgmv2.convert_latlon_arr(const_lon_y, const_lon_x, const_lon_x * 0.0, timestamp, method_code="A2G") sort_idx = np.argsort(const_lon_y) const_lon_x = const_lon_x[sort_idx] const_lon_y = const_lon_y[sort_idx] const_lon_x, const_lon_y = transformer.transform(const_lon_x, const_lon_y) # Add contour to dict, along with color and linewidth self.contour_data["x"].append(const_lon_x) self.contour_data["y"].append(const_lon_y) self.contour_data["color"].append(color) self.contour_data["linewidth"].append(linewidth) self.contour_data["linestyle"].append(linestyle) self.contour_data["marker"].append(marker) self.contour_data["zorder"].append(int(bring_to_front))
Add geomagnetic contours to a mosaic.
Args
timestamp (datetime.datetime): The timestamp used in computing AACGM coordinates.
lats (ndarray or list): Sequence of geomagnetic latitudes defining a contour.
lons (ndarray or list): Sequence of geomagnetic longitudes defining a contour.
constant_lats (float, int, Sequence): Geomagnetic latitude(s) at which to add contour(s) of constant latitude.
constant_lons (float, int, Sequence): Geomagnetic longitude(s) at which to add contours(s) of constant longitude.
color (str): The matplotlib color used for the contour(s).
linewidth (float or int): The contour thickness.
linestyle (str): The matplotlib linestyle used for the contour(s).
marker (str): The matplotlib marker used for the contour(s).
Returns
The object's contour_data parameter is populated appropriately.
Raises
ValueError
- issues encountered with supplied parameters.
def plot(self,
map_extent: Sequence[float | int],
figsize: Tuple[int, int] | None = None,
rayleighs: bool = False,
max_rayleighs: int = 20000,
title: str | None = None,
colorbar_title: str | None = None,
ocean_color: str | None = None,
land_color: str = 'gray',
land_edgecolor: str = '#8A8A8A',
borders_color: str = '#AEAEAE',
borders_disable: bool = False,
cbar_colormap: str = '',
returnfig: bool = False,
savefig: bool = False,
savefig_filename: str | None = None,
savefig_quality: int | None = None) ‑> Any-
Expand source code
def plot(self, map_extent: Sequence[Union[float, int]], figsize: Optional[Tuple[int, int]] = None, rayleighs: bool = False, max_rayleighs: int = 20000, title: Optional[str] = None, colorbar_title: Optional[str] = None, ocean_color: Optional[str] = None, land_color: str = "gray", land_edgecolor: str = "#8A8A8A", borders_color: str = "#AEAEAE", borders_disable: bool = False, cbar_colormap: str = "", returnfig: bool = False, savefig: bool = False, savefig_filename: Optional[str] = None, savefig_quality: Optional[int] = None) -> Any: """ Generate a plot of the mosaic data. Either display it (default behaviour), save it to disk (using the `savefig` parameter), or return the matplotlib plot object for further usage (using the `returnfig` parameter). Args: map_extent (List[int]): Latitude/longitude range to be visible on the rendered map. This is a list of 4 integers and/or floats, in the order of [min_lon, max_lon, min_lat, max_lat]. figsize (tuple): The matplotlib figure size to use when plotting. For example `figsize=(14,4)`. rayleighs (bool): Set to `True` if the data being plotted is in Rayleighs. Defaults to `False`. max_rayleighs (int): Max intensity scale for Rayleighs. Defaults to `20000`. ocean_color (str): Colour of the ocean. Default is cartopy's default shade of blue. Colours can be supplied as a word, or hexcode prefixed with a '#' character (ie. `#55AADD`). land_color (str): Colour of the land. Default is `gray`. Colours can be supplied as a word, or hexcode prefixed with a '#' character (ie. `#41BB87`). land_edgecolor (str): Color of the land edges. Default is `#8A8A8A`. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_color (str): Color of the country borders. Default is `AEAEAE`. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_disable (bool): Disbale rendering of the borders. Default is `False`. cbar_colorcmap (str): The matplotlib colormap to use for the plotted color bar. Default is `gray`, unless mosaic was created with spectrograph data, in which case defaults to the colormap used for spectrograph data.. Commonly used colormaps are: - REGO: `gist_heat` - THEMIS ASI: `gray` - TREx Blue: `Blues_r` - TREx NIR: `gray` - TREx RGB: `None` A list of all available colormaps can be found on the [matplotlib documentation](https://matplotlib.org/stable/gallery/color/colormap_reference.html). returnfig (bool): Instead of displaying the image, return the matplotlib figure object. This allows for further plot manipulation, for example, adding labels or a title in a different location than the default. Remember - if this parameter is supplied, be sure that you close your plot after finishing work with it. This can be achieved by doing `plt.close(fig)`. Note that this method cannot be used in combination with `savefig`. savefig (bool): Save the displayed image to disk instead of displaying it. The parameter savefig_filename is required if this parameter is set to True. Defaults to `False`. savefig_filename (str): Filename to save the image to. Must be specified if the savefig parameter is set to True. savefig_quality (int): Quality level of the saved image. This can be specified if the savefig_filename is a JPG image. If it is a PNG, quality is ignored. Default quality level for JPGs is matplotlib/Pillow's default of 75%. Returns: The displayed montage, by default. If `savefig` is set to True, nothing will be returned. If `returnfig` is set to True, the plotting variables `(fig, ax)` will be returned. Raises: """ # check return mode if (returnfig is True and savefig is True): raise ValueError("Only one of returnfig or savefig can be set to True") if returnfig is True and (savefig_filename is not None or savefig_quality is not None): warnings.warn("The figure will be returned, but a savefig option parameter was supplied. Consider " + "removing the savefig option parameter(s) as they will be ignored.", stacklevel=1) elif (savefig is False and (savefig_filename is not None or savefig_quality is not None)): warnings.warn("A savefig option parameter was supplied, but the savefig parameter is False. The " + "savefig option parameters will be ignored.", stacklevel=1) # Get colormap if there is spectrograph data if self.spect_cmap is not None: cbar_colormap = self.spect_cmap # initialize figure fig = plt.figure(figsize=figsize) ax = fig.add_axes((0, 0, 1, 1), projection=self.cartopy_projection) ax.set_extent(map_extent, crs=cartopy.crs.Geodetic()) # type: ignore # add ocean # # NOTE: we use the default ocean color if (ocean_color is not None): ax.add_feature( # type: ignore cartopy.feature.OCEAN, facecolor=ocean_color, zorder=0) else: ax.add_feature(cartopy.feature.OCEAN, zorder=0) # type: ignore # add land ax.add_feature( # type: ignore cartopy.feature.LAND, facecolor=land_color, edgecolor=land_edgecolor, zorder=0) # add borders if (borders_disable is False): ax.add_feature( # type: ignore cartopy.feature.BORDERS, edgecolor=borders_color, zorder=0) # add polygon data # # NOTE: it seems that when running this function a second time, the polygon # data is not too happy. So to handle this, we plot a copy of the polygon data if isinstance(self.polygon_data, list): for polygon_data in self.polygon_data: ax.add_collection(copy(polygon_data)) else: ax.add_collection(copy(self.polygon_data)) if self.contour_data is not None: for i in range(len(self.contour_data["x"])): ax.plot(self.contour_data["x"][i], self.contour_data["y"][i], color=self.contour_data["color"][i], linewidth=self.contour_data["linewidth"][i], linestyle=self.contour_data["linestyle"][i], marker=self.contour_data["marker"][i], zorder=self.contour_data["zorder"][i]) # set title if (title is not None): ax.set_title(title) # add text if (rayleighs is True): if isinstance(self.polygon_data, list): raise ValueError("Rayleighs Keyword is currently not available for mosaics with multiple sets of data.") # Create a colorbar, in Rayleighs, that accounts for the scaling limit we applied cbar_ticks = [float(j) / 5. for j in range(0, 6)] cbar_ticknames = [str(int(max_rayleighs / 5) * j) for j in range(0, 6)] # Any pixels with the max Rayleigh value could be greater than it, so we include the plus sign cbar_ticknames[-1] += "+" self.polygon_data.set_cmap(cbar_colormap) cbar = plt.colorbar(self.polygon_data, shrink=0.5, ticks=cbar_ticks, ax=ax) cbar.ax.set_yticklabels(cbar_ticknames) plt.text(1.025, 0.5, "Intensity (Rayleighs)", fontsize=14, transform=ax.transAxes, va="center", rotation="vertical", weight="bold", style="oblique") if (self.spect_cmap) is not None: if (self.spect_intensity_scale) is None: intensity_max = np.nan intensity_min = np.nan else: intensity_max = self.spect_intensity_scale[1] intensity_min = self.spect_intensity_scale[0] # Create a colorbar, in Rayleighs, that accounts for the scaling limit we applied cbar_ticks = [float(j) / 5. for j in range(0, 6)] cbar_ticknames = [str(int((intensity_max / 5) + intensity_min) * j) for j in range(0, 6)] # Any specrograph bins with the max intensity value could be greater than it, so we include the plus sign cbar_ticknames[-1] += "+" if isinstance(self.polygon_data, list): self.polygon_data[0].set_cmap(cbar_colormap) else: self.polygon_data.set_cmap(cbar_colormap) if isinstance(self.polygon_data, list): cbar = plt.colorbar(self.polygon_data[0], shrink=0.5, ticks=cbar_ticks, ax=ax) else: cbar = plt.colorbar(self.polygon_data, shrink=0.5, ticks=cbar_ticks, ax=ax) cbar.ax.set_yticklabels(cbar_ticknames) if colorbar_title is None: plt.text(1.025, 0.5, "Spectrograph Intensity (Rayleighs)", fontsize=10, transform=ax.transAxes, va="center", rotation="vertical", weight="bold", style="oblique") else: plt.text(1.025, 0.5, colorbar_title, fontsize=10, transform=ax.transAxes, va="center", rotation="vertical", weight="bold", style="oblique") # save figure or show it if (savefig is True): # check that filename has been set if (savefig_filename is None): raise ValueError("The savefig_filename parameter is missing, but required since savefig was set to True.") # save the figure f_extension = os.path.splitext(savefig_filename)[-1].lower() if (".jpg" == f_extension or ".jpeg" == f_extension): # check quality setting if (savefig_quality is not None): plt.savefig(savefig_filename, quality=savefig_quality, bbox_inches="tight") else: plt.savefig(savefig_filename, bbox_inches="tight") else: if (savefig_quality is not None): # quality specified, but output filename is not a JPG, so show a warning warnings.warn("The savefig_quality parameter was specified, but is only used for saving JPG files. The " + "savefig_filename parameter was determined to not be a JPG file, so the quality will be ignored", stacklevel=1) plt.savefig(savefig_filename, bbox_inches="tight") # clean up by closing the figure plt.close(fig) elif (returnfig is True): # return the figure and axis objects return (fig, ax) else: # show the figure plt.show(fig) # cleanup by closing the figure plt.close(fig) # return return None
Generate a plot of the mosaic data.
Either display it (default behaviour), save it to disk (using the
savefig
parameter), or return the matplotlib plot object for further usage (using thereturnfig
parameter).Args
map_extent
:List[int]
- Latitude/longitude range to be visible on the rendered map. This is a list of 4 integers and/or floats, in the order of [min_lon, max_lon, min_lat, max_lat].
figsize
:tuple
- The matplotlib figure size to use when plotting. For example
figsize=(14,4)
. rayleighs
:bool
- Set to
True
if the data being plotted is in Rayleighs. Defaults toFalse
. max_rayleighs
:int
- Max intensity scale for Rayleighs. Defaults to
20000
. ocean_color
:str
- Colour of the ocean. Default is cartopy's default shade of blue. Colours can be supplied
as a word, or hexcode prefixed with a '#' character (ie.
#55AADD
). land_color
:str
- Colour of the land. Default is
gray
. Colours can be supplied as a word, or hexcode prefixed with a '#' character (ie.#41BB87
). land_edgecolor
:str
- Color of the land edges. Default is
#8A8A8A
. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_color
:str
- Color of the country borders. Default is
AEAEAE
. Colours can be supplied as a word, or hexcode prefixed with a '#' character. borders_disable
:bool
- Disbale rendering of the borders. Default is
False
. cbar_colorcmap
:str
-
The matplotlib colormap to use for the plotted color bar. Default is
gray
, unless mosaic was created with spectrograph data, in which case defaults to the colormap used for spectrograph data..Commonly used colormaps are:
- REGO:
gist_heat
- THEMIS ASI:
gray
- TREx Blue:
Blues_r
- TREx NIR:
gray
- TREx RGB:
None
A list of all available colormaps can be found on the matplotlib documentation.
- REGO:
returnfig
:bool
-
Instead of displaying the image, return the matplotlib figure object. This allows for further plot manipulation, for example, adding labels or a title in a different location than the default.
Remember - if this parameter is supplied, be sure that you close your plot after finishing work with it. This can be achieved by doing
plt.close(fig)
.Note that this method cannot be used in combination with
savefig
. savefig
:bool
- Save the displayed image to disk instead of displaying it. The parameter savefig_filename is required if
this parameter is set to True. Defaults to
False
. savefig_filename
:str
- Filename to save the image to. Must be specified if the savefig parameter is set to True.
savefig_quality
:int
- Quality level of the saved image. This can be specified if the savefig_filename is a JPG image. If it is a PNG, quality is ignored. Default quality level for JPGs is matplotlib/Pillow's default of 75%.
Returns
The displayed montage, by default. If
savefig
is set to True, nothing will be returned. Ifreturnfig
is set to True, the plotting variables(fig, ax)
will be returned. Raises:
class MosaicData (site_uid_list: List[str],
timestamps: List[datetime.datetime],
images: Dict[str, numpy.ndarray],
images_dimensions: Dict[str, Tuple],
data_types: List[str])-
Expand source code
@dataclass class MosaicData: """ Prepared image data for use by mosaic routines. Attributes: site_uid_list (List[str]): List of site unique identifiers contained within this object. timestamps (List[datetime.datetime]): Timestamps of corresponding images. images (Dict[str, numpy.ndarray]): Image data prepared into the necessary format; a dictionary. Keys are the site UID, ndarray is the prepared data. images_dimensions (Dict[str, Tuple]): The image dimensions. data_types (List[str]): The data types for each data object. """ site_uid_list: List[str] timestamps: List[datetime.datetime] images: Dict[str, ndarray] images_dimensions: Dict[str, Tuple] data_types: List[str] def __str__(self) -> str: return self.__repr__() def __repr__(self) -> str: unique_dimensions = str(list(dict.fromkeys(self.images_dimensions.values()))).replace("[", "").replace("]", "").replace("), (", "),(") images_str = "Dict[%d sites of array(dims=%s)]" % (len(self.images.keys()), unique_dimensions) timestamps_str = "[%d timestamps]" % (len(self.timestamps)) return "MosaicData(images=%s, timestamps=%s, site_uid_list=%s)" % (images_str, timestamps_str, self.site_uid_list.__repr__())
Prepared image data for use by mosaic routines.
Attributes
site_uid_list
:List[str]
- List of site unique identifiers contained within this object.
timestamps
:List[datetime.datetime]
- Timestamps of corresponding images.
images
:Dict[str, numpy.ndarray]
- Image data prepared into the necessary format; a dictionary. Keys are the site UID, ndarray is the prepared data.
images_dimensions
:Dict[str, Tuple]
- The image dimensions.
data_types
:List[str]
- The data types for each data object.
Class variables
var data_types : List[str]
var images : Dict[str, numpy.ndarray]
var images_dimensions : Dict[str, Tuple]
var site_uid_list : List[str]
var timestamps : List[datetime.datetime]
class MosaicSkymap (site_uid_list: List[str],
elevation: List[numpy.ndarray],
polyfill_lat: List[numpy.ndarray],
polyfill_lon: List[numpy.ndarray])-
Expand source code
@dataclass class MosaicSkymap: """ Prepared skymap data for use by mosaic routines. Attributes: site_uid_list (List[str]): List of site unique identifiers contained within this object. elevation (List[numpy.ndarray]): List of elevation data, with each element corresponding to each site. Order matches that of the `site_uid_list` attribute. polyfoll_lat (List[numpy.ndarray]): List of latitude polygon data, with each element corresponding to each site. Order matches that of the `site_uid_list` attribute. polyfoll_lon (List[numpy.ndarray]): List of longitude polygon data, with each element corresponding to each site. Order matches that of the `site_uid_list` attribute. """ site_uid_list: List[str] elevation: List[ndarray] polyfill_lat: List[ndarray] polyfill_lon: List[ndarray] def __str__(self) -> str: return self.__repr__() def __repr__(self) -> str: unique_polyfill_lat_dims = str(list(dict.fromkeys(fill_arr.shape for fill_arr in self.polyfill_lat))).replace("[", "").replace("]", "").replace("), (", "),(") unique_polyfill_lon_dims = str(list(dict.fromkeys(fill_arr.shape for fill_arr in self.polyfill_lon))).replace("[", "").replace("]", "").replace("), (", "),(") unique_elevation_dims = str(list(dict.fromkeys(el.shape for el in self.elevation))).replace("[", "").replace("]", "").replace("), (", "),(") polyfill_lat_str = "array(dims=%s, dtype=%s)" % (unique_polyfill_lat_dims, self.polyfill_lat[0].dtype) polyfill_lon_str = "array(dims=%s, dtype=%s)" % (unique_polyfill_lon_dims, self.polyfill_lon[0].dtype) elevation_str = "array(dims=%s, dtype=%s)" % (unique_elevation_dims, self.elevation[0].dtype) return "MosaicSkymap(polyfill_lat=%s, polyfill_lon=%s, elevation=%s, site_uid_list=%s)" % ( polyfill_lat_str, polyfill_lon_str, elevation_str, self.site_uid_list.__repr__(), )
Prepared skymap data for use by mosaic routines.
Attributes
site_uid_list
:List[str]
- List of site unique identifiers contained within this object.
elevation
:List[numpy.ndarray]
- List of elevation data, with each element corresponding to each site. Order
matches that of the
site_uid_list
attribute. polyfoll_lat
:List[numpy.ndarray]
- List of latitude polygon data, with each element corresponding to each site.
Order matches that of the
site_uid_list
attribute. polyfoll_lon
:List[numpy.ndarray]
- List of longitude polygon data, with each element corresponding to each site.
Order matches that of the
site_uid_list
attribute.
Class variables
var elevation : List[numpy.ndarray]
var polyfill_lat : List[numpy.ndarray]
var polyfill_lon : List[numpy.ndarray]
var site_uid_list : List[str]